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A B S T R A C T

Traditional integrated navigation algorithms for guided projectiles face significant roll error resulting from poor 
MEMS IMU accuracy and limited observability of roll angles during in-flight alignment. This article introduces a 
Lie groups-based Kalman filter (LG-KF) SINS/GNSS algorithm in the launch-centered earth-fixed (LCEF) frame to 
enhance navigation convergence and accuracy under conditions of large misalignment and poor IMU perfor
mance. First, a Lie group-based mechanization model for guided projectile is established to provide a foundation 
for SINS error model. Then, the LG-KF integrated navigation algorithm in the LCEF frame is designed, demon
strating inherent nonlinearity error reduction in principle. Subsequently, simulation experiments and a road test 
are conducted to compare the LG-KF algorithm with EKF, ST-EKF, and Quat-EKF. The results indicate that LG-KF 
effectively mitigates nonlinear errors associated with large misalignments in integrated navigation, exhibiting 
higher convergence speed and accuracy compared to the other three algorithms. LG-KF stands out as the sole 
algorithm among the four to achieve convergence with roll misalignment error of ±140◦.

1. Introduction

Hypervelocity projectiles (HVPs) experience shocks of 10,000 to 
30,000g (g as the unit of acceleration, where 1 g = 9.81 m/s²) and high- 
speed spinning with the initial launch [1]. The shocks and spinning 
exceeds the measurement ranges of inertial measurement unit (IMU), 
preventing the strapdown inertial navigation system (SINS) work during 
launch. In fact, most of guided projectiles estimate its attitude, velocity 
and position after launch, and the estimation of attitude is called 
in-flight alignment. The error of attitude estimation, also known as 
misalignment, is typically large because of the limited navigation in
formation and significant IMU errors. Large misalignment is a challenge 
for the integrated navigation. Substantial deviations between initial 
navigation states and true physical conditions can trigger mismatch 
between empirical and theoretical covariance, severely compromising 
system stability [2,3].

After launch, projectiles activate thermoelectric batteries, compli
cating in-flight alignment when the movement of HVP is almost free-fall. 
the position and velocity can be observed in relatively high accuracy by 

Global Navigation Satellite System (GNSS), the attitude, however, is not 
observable, and the uncertainty of attitude will make the SINS work in a 
wrong state.

Numerous in-flight alignment methodologies have been developed 
specifically to address the attitude estimation challenge in HVPs. A 
functional iteration in-flight alignment method proposed by Wang in
tegrated the information of MSINS and GNSS by Legendre polynomials 
[4]. However, the attitude error deteriorates scenarios demanding 
shorter alignment times in near-boundary with only several second for 
alignment. Li proposed an air coarse alignment method based on kine
matics constraints to estimate the roll angle[5]. But the accuracy of this 
method may be deteriorated by aerodynamic, structural asymmetries, 
servo deadband errors of electrical or mechanical of HVPs. Guided 
projectiles experience significant challenges in integrated navigation 
with large misalignment angles, posing adaptation difficulties for cur
rent navigation algorithm.

Although a considerable number of in-flight alignment methods for 
HPV are proposed, large misalignment still remains a problem for HVP 
navigation. Firstly, Gyro bias errors can reach several degrees per 
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second, and accelerometer drift can reach several milli g after high-g 
shocks. The degradation of IMU accuracy under high-g shocks com
promises projectile in-flight alignment precision. Secondly, roll angle 
estimation requires the practical trajectory adhere to the design, thus 
alignment accuracy can be degraded by aerodynamic-structural asym
metries and servo mechanism nonlinearities in HVPs.

Extensive research has been conducted to eliminate linearization 
errors associated with large misalignment angles nonlinearity. Wang 
established an error model of SINS and introduced a Lyapunov equiva
lent transformation to derive the equivalence of SINS and gimbaled in
ertial navigation system (GINS). An integrated navigation Kalman filter 
based on this transformation was then designed and used to estimate 
IMU errors, though all discussions are ground-based [6]. Li designed a 
robust adaptive SINS/CNS integrated navigation (RASCIN) based on the 
traditional EKF to mitigate the influence of observation errors in celes
tial measurements by adjusting the weight matrix. The attitude solution 
of RASCIN converge with yaw misalignment of 15◦ [7].

Wang proposed a state transformation extended Kalman filter (ST- 
EKF) for GPS/SINS tightly coupled integration to adapt the filter to head 
misalignment of 20◦ [8]. Lu proposed a backward smooth singular value 
decomposition cubature Kalman filter (SVDCKF) algorithm,[9] 
achieving integrated navigation under large misalignment angles. 
However, unscented Kalman filter (UKF) and CKF are nonlinear algo
rithms based on sigma points, whose performance depends on the se
lection of sigma points in nonlinear systems. Particle filtering (PF), 
suitable for strong nonlinearity, was introduced by Hao as an integrated 
navigation algorithm,[10] estimating attitude during in-motion align
ment, with misalignment angles of [10◦, 10◦, 60◦] (60◦ in head). How
ever, PF requires a substantially larger number of particles (hundreds of 
times more than the sigma points of UKF and CKF), resulting in 
considerably higher computational burdens compared to UKF and CKF.

The SINS is inherently nonlinear. Traditional algorithms linearize the 
SINS, adopting small disturbance hypothesis, which is unsuitable for 
large misalignment navigation [11]. Therefore, a method that can 
describe rotations linearly and a system model that remains linear even 
under large misalignment angles must be established to mathematically 
address the linearization errors associated with large misalignment an
gles. Barrau introduced a Lie groups error model for inertial systems, 
including left and right error models, and described attitude error 
models in the special Euclidean (SE) group [12]. Barrau also proposed a 
probabilistic approach for intrinsic filtering of a system on a matrix Lie 
groups with invariance properties [13]. Chang proposed a log-linear 
model, highlighting that the affine properties of Lie groups make the 
error models applicable to arbitrary misalignment, which is highly ad
vantageous for integrated navigation dealing with large misalignment 
[14]. Tang indicated that Lie groups-based state-space models can be 
considered linear error models, designing an integrated SINS/DVL 
navigation system for underwater applications that improved heading 
and horizontal attitude convergence speed and precision under 
misalignment of [10◦, 10◦, 120◦] (120◦ in heading). Tang also suggested 
the potential of this algorithm for integrating the alignment and navi
gation [15]. Xu established the SE(2) model for in-motion alignment of 
shipborne carriers [16].

Considering the guidance and control requirements of HVPs, this 
study selects the launch-centered Earth-fixed (LCEF) frame as the nav
igation frame, which is defined as Table 1 [17].

The advantages of strapdown inertial navigation in the LCEF frame 
have been discussed in previous work[18–21]. In the attitude equation 
for the LCEF frame, the attitude solution depends solely on the initial 
attitude value and gyroscope output, avoiding the influence of acceler
ometer errors on the attitude calculation [18]. In the specific force 
equation of the LCEF frame, the Coriolis acceleration term is constant, 
with its derivative being a zero matrix [19,20]. The LCEF frame strap
down algorithm can compensate for non-commutativity errors, 
achieving an error-free strapdown algorithm [21].

Since Barrau made the first attempt to design filters on SO(3),[22] 
Lie groups theory has been used in integrated navigation system of 
different vehicles, such as aircrafts and UVAs [14,15]. The potential 
application of LG-KF is rather attractive. Li group based integrated 
navigation algorithm outperformed traditional algorithms in handling 
with large misalignment. Navigation results will keep reliable even 
when the alignment fails, as the performance of navigation algorithm is 
enhanced.

This study presents a novel Lie groups-based Kalman filter (LG-KF) 
method integrated in the LCEF frame, which addresses challenges posed 
by large misalignment in guided projectiles’ navigation systems. The 
proposed method ensures navigation system convergence under large 
misalignment, relaxes the precision requirements for in-flight alignment 
of guided projectiles, and reduces the response time. First, we designed 
the LG-KF based on SE(3) left error model before analyzing error 
propagation. Then the filtering process model in the LCEF frame is 
proved to be independent of state estimates, which is highly advanta
geous when initial alignment errors are large in SINS. Subsequently, 
simulations and road test are conducted to prove the advantage of LG- 
KF.

Section 2 discusses the description of the navigation state in the LCEF 
frame under a special Euclidean group and the navigation algorithm in 
the LCEF frame. Section 3 introduces the of LG error model in LCEF. 
Section 4 elaborates on the design of the Lie groups integrated naviga
tion algorithm in the LCEF frame, including error models, state equa
tion, measurement equation, and integrated navigation algorithms. 
Section 5 demonstrates the navigation simulation and a road test results, 
four algorithms are analyzed and compared, verifying the convergence 
and accuracy advantages of LG-KF in integrated navigation under large 
misalignment angles. The conclusions are presented in Section 6.

2. LG-KF integrated navigation algorithm in the LCEF frame

2.1. Lie groups and Lie algebra

A group is an algebraic structure satisfying closure, associativity, 
identity element, and invertibility properties under a binary operation. 
Lie groups, which are differential manifolds with smooth or differen
tiable group operations, include general linear groups, special orthog
onal groups, and special Euclidean groups. These groups naturally 
combine algebraic and geometric structures through differential mani
folds, making them suitable for solving differential equation problems in 
navigation.

The special orthogonal (SO) group and the special Euclidean (SE) 
group, formed respectively by matrix multiplication with sets of rotation 
matrices and transformation matrices, are primarily used to describe 
rigid body motion. This section provides useful matrix Lie groups for
mulas to derive corresponding error models.

Carrier motion can be viewed as one coordinate system transforming 
into another through attitude rotation and position/velocity translation. 
Rotation is described by a 3 × 3 matrix R, and velocity/position trans
lation by three-dimensional vectors V andP, denoted as SO(3) and SE(3), 
respectively. 

Table 1 
Definition of LCEF frame.

Reference Frame launch-centered Earth-fixed, non-inertial

Origin Projectile launch point
X-axis Target direction (azimuth)
Y-axis Right-handed completion
Z-axis Local vertical (upwards)
Handedness Right-hand rule (ENU)
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⎧
⎪⎪⎨

⎪⎪⎩

SO(3) =
{
R ∈ SO(3)|RRT = I3×3,detR = 1

}

SE2(3) =

⎧
⎪⎪⎨

⎪⎪⎩

T =

⎡

⎢
⎢
⎣

R V P

01×3 1 0

01×3 0 1

⎤

⎥
⎥
⎦ ∈ R5×5⃒⃒

R ∈ SO(3)

V,P ∈ R3

⎫
⎪⎪⎬

⎪⎪⎭

(1) 

The Lie algebra associated with SO(3) and SE(3) are represented by 
so(3) and se2(3): 

⎧
⎪⎪⎨

⎪⎪⎩

so(3) =
{

θ|θ ∈ R3, [θ×] ∈ R3×3}

se2(3) =

⎧
⎪⎪⎨

⎪⎪⎩

ζ =

⎡

⎢
⎢
⎣

θ

υ

ρ

⎤

⎥
⎥
⎦

⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒

θ ∈ so(3),υ, ρ ∈ R3, ζ̂ =

⎡

⎢
⎢
⎣

θ× υ ρ

01×3 0 0

01×3 0 0

⎤

⎥
⎥
⎦ ∈ R5×5

⎫
⎪⎪⎬

⎪⎪⎭

(2) 

where θrepresents a three-dimensional rotation vector, υ andρ denote 
three-dimensional translation vectors.

A Lie groupsSO(3), SE(3) and its associated Lie algebra so(3) and 
se2(3) are linked through the exponential map: 

R = exp(θ×) = exp(θa×)

= cosθI3×3 + (1 − cosθ)aaT + sinθ(a×)

T = exp(ζ̂) =

⎡

⎢
⎢
⎣

exp(θ×) Jυ Jρ

01×3 1 0

01×3 0 1

⎤

⎥
⎥
⎦

(3) 

where θ = |θ|, a represents the unit vector of θ, exp represents the 
exponential mapping of matrices, υ and ρ represent 3D translation 
vectors, and J represents the Jacobian matrix of SO(3). 

J=
sinθ

θ
I3×3 +

(

1 −
sinθ

θ

)

aaT +

(
1 − cosθ

θ

)

[a× ] (4) 

The inverse of SE(3) can be given as follows: 

T− 1 =

⎡

⎣
R − RTV − RTP

01×3 1 0
01×3 0 1

⎤

⎦ ∈ SE2(3) (5) 

In a LCEF frame, the position velocity and attitude are loose coupled, 
and the affine properties of the Lie groups are satisfied. Thus, selecting 
the LCEF frame enables the navigation error to extend straightforwardly 
to the SE group, eliminating the nonlinearity of attitude error.

2.2. Lie groups-based mechanization in the LCEF frame

The strapdown inertial navigation mechanization in the LCEF frame 
is represented as follows: 19 

⎡

⎢
⎢
⎣

Ṗg

V̇g

Ṙg
b

⎤

⎥
⎥
⎦ =

⎡

⎢
⎢
⎢
⎣

Vg

Rg
bf

b
− 2Ωg

agV
g + gg

Rg
bΩb

gb

⎤

⎥
⎥
⎥
⎦

(6) 

where Pg and Vgdenote the position and velocity vectors of the carrier in 
the LCEF frame (also marked as g-frame). Rg

b represents the carrier’s 
attitude matrix in the g-frame. fb denotes the specific force measured by 
the accelerometer. Ωg

ag is the skew-symmetric matrix of the rotation 
angular velocity ωg

ag of the LCEF frame relative to the launch-centered 
inertial frame (also marked as a-frame). gg is the gravity vector in the 

LCEF frame. Ωb
gb is the skew-symmetric matrix of the rotation angular 

velocity ωb
gb of the body frame (also marked as b-frame) relative to the 

LCEF frame. 

Ωb
gb = Ωb

ab − Ωb
ag (7) 

where Ωb
ab represents the skew-symmetric matrix of angular velocity 

measured by gyroscope, Ωb
ig = Rb

gΩg
igR

g
b.

The relationship for gravity gg in the LCEF frame can be expressed as 
follows: 

gg = Gg − Ωg
agΩ

g
agP

g (8) 

where Gg represents gravitation at Pg.
The auxiliary velocity vector Vg in the LCEF frame is constructed as 

follows: 

Vg
= Vg + Ωg

agP
g (9) 

Using the constructed auxiliary velocity vector, the strapdown in
ertial navigation differential equations in the LCEF frame are given as 
follows: 

⎡

⎢
⎢
⎣

Ṗg

V̇
g

Ṙg
b

⎤

⎥
⎥
⎦ =

⎡

⎢
⎢
⎢
⎣

Vg
− Ωg

agP
g

Rg
bf

b
− Ωg

agV
g
+ Gg

Rg
bΩb

gb

⎤

⎥
⎥
⎥
⎦

(10) 

Incorporating the attitude rotation matrix Rg
b, velocity Vg, and po

sition Pg into the Lie groups, the Lie groups state variables can be con
structed as follows: 

χ =

⎡

⎢
⎢
⎣

Rg
b Vg Pg

01×3 1 0
01×3 0 1

⎤

⎥
⎥
⎦ ∈ SE2(3) (11) 

Therefore, the strapdown inertial navigation differential equations in 
the LCEF frame can be rewritten as a dynamic model: 

χ̇ = f(χ) =

⎡

⎢
⎢
⎣

Rg
bΩb

gb Rg
bf

b
− Ωg

agV
g
+ Gg Vg

− Ωg
agP

g

01×3 1 0
01×3 0 1

⎤

⎥
⎥
⎦ (12) 

3. Lie groups based nonlinear error state model in the LCEF 
frame

3.1. Lie groups–based error model

According to the definition of state error, Lie groups error models can 
be classified into left error model τl and right error model τr. 
{

τl = χ̃ − 1χ
τr = χ χ̃ − 1 (13) 

The state variables of the Lie groups are inverted as follows: 

χ − 1 =

⎡

⎢
⎢
⎣

Rb
g − Rb

gV
g

− Rb
gP

g

01×3 1 0
01×3 0 1

⎤

⎥
⎥
⎦ ∈ SE2(3) (14) 
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3.1.1. Lie groups right error model in the LCEF frame
By combining equations (11), (13), and (14), the transmission system 

Lie groups SINS right error model is derived as follows: 

τr = χ χ̃− 1
=

⎡

⎢
⎢
⎢
⎣

Rg
b Vg Pg

01×3 1 0
01×3 0 1

⎤

⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎣

R̃
b
g − R̃

b
gṼ

g
− R̃

b
g P̃

g

01×3 1 0
01×3 0 1

⎤

⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎣

Rg
bR̃

b
g Vg

− Rg
bR̃

b
gṼ

g
Pg − Rg

bR̃
b
gP̃

g

01×3 1 0
01×3 0 1

⎤

⎥
⎥
⎥
⎦
=

⎡

⎢
⎢
⎢
⎣

τa
r τv

r τp
r

01×3 1 0
01×3 0 1

⎤

⎥
⎥
⎥
⎦
∈ SE(3)

(15) 

where, R̃
b
g , Ṽ

g 
and P̃

g 
represent the navigation parameters calculated by 

the inertial navigation system. Rb
g , V

g, and Pg denote the true navigation 
parameters. τa

r , τv
r , and τp

r are the attitude, velocity, and position errors 
defined on right error model of Lie groups in the LCEF frame.

Let ϕr denote the misalignment angle error of the right error model, 
with its skew-symmetric matrix as ψr (ψr = [ϕr × ]). When ϕr is mini
mized, τa

r can be derived based on the relationship between Lie groups 
and Lie algebra: 

τa
r = Rg

bR̃
b
g = exp(ϕr ×) ≈ I3×3 + ϕr× (16) 

Using this equation, corresponding velocity and position error vec
tors for the right error model can be deduced as follows: 

τv
r = Vg

− Rg
bR̃

b
gṼ

g
= − δVg

+ (Ṽ
g
×)ϕl (17) 

τp
r = Pg − Rg

bR̃
b
g P̃

g
= − δPg + (P̃

g
)ϕl (18) 

where δVg
= Ṽ

g
− Vg and δPg = P̃

g
− Pg.

3.1.2. Lie groups left error model in the LCEF frame
By combining equations (11), (13), and (14), the transmission system 

Lie groups SINS left error model is derived as follows: 

τl = χ̃− 1χ =

⎡

⎢
⎢
⎢
⎣

R̃
b
g − R̃

b
gṼ

g
− R̃

b
gP̃

g

01×3 1 0
01×3 0 1

⎤

⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎣

Rg
b Vg Pg

01×3 1 0
01×3 0 1

⎤

⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎣

R̃
b
gR

g
b R̃

b
g(V

g
− Ṽ

g
) R̃

b
g(P

g − P̃
g
)

01×3 1 0
01×3 0 1

⎤

⎥
⎥
⎥
⎦
=

⎡

⎢
⎢
⎢
⎣

τa
l τv

l τp
l

01×3 1 0
01×3 0 1

⎤

⎥
⎥
⎥
⎦
∈ SE(3)

(19) 

where τa
l , τv

l , and τp
l denote the attitude, velocity, and position errors 

defined on left error model of Lie groups in the new LCEF frame.
Let ϕl denote the misalignment angle error of the left error model, 

with its skew-symmetric matrix as ψ l (ψ l = [ϕl × ]). When ϕl is mini
mized, τa

l can be derived based on the relationship between Lie groups 
and Lie algebra: 

τa
l = R̃

b
gR

g
b = exp(ϕl ×) ≈ I3×3 + ϕl× (20) 

τv
l = R̃

b
g(V

g
− Ṽ

g
) = − R̃

b
gδVg (21) 

τp
l = R̃

b
g(P

g − P̃
g
) = − R̃

b
gδPg (22) 

where δVg
= Ṽ

g
− Vg and δPg = P̃

g
− Pg.

3.1.3. Analysis and selection of the Lie groups error model
The selection of the error model depends on the type of invariant 

observation, which are defined as follows: 
ʹ́ leftinvariantʹ́ observation : y = χ ⋅b (23) 

ʹ́ rightinvariantʹ́ observation : y = χ − 1⋅b (24) 

where b is a constant vector.
If the observed vectors satisfy the "left-invariant" observation con

dition given in the first equation, the state left error model in the com
posite navigation combination is advantageous because the linearized 
observation model is independent of the global state χ . Conversely, if the 
observed vectors satisfy the "right-invariant" observation condition 
given in the second equation, the state right error model in the com
posite navigation model is more advantageous.

For the SINS/GNSS integrated navigation system, the GNSS system 
can provide velocity Vg and position Pg observation information in the 
LCEF frame. Considering that y is constituted by velocity and position 
vectors, y = [Vg Pg ]

T , the observation vector in the Lie groups can be 
represented as follows: 
⎡

⎢
⎢
⎣

Rg
b Vg Pg

01×3 1 0
01×3 0 1

⎤

⎥
⎥
⎦

⎡

⎣
03×1 03×1
1 0
0 1

⎤

⎦ =

⎡

⎣
Vg Pg

1 0
0 1

⎤

⎦ = χ
[
bv bp

]
(25) 

whereχ is the state variables in (11) and bv, bp are constant vectors as 
follows: 

[
bv bp

]
=

⎡

⎣
03×1 03×1
1 0
0 1

⎤

⎦ (26) 

Both velocity and position observations satisfy the left-invariant 
observation definition.

The focus of integrated navigation is on attitude. Therefore, the 
definitions of left and right error models are discussed. The definitions of 
attitude error in the left and right error models are as follows: 

τa
l = R̃

b
gR

g
b (27) 

τa
r = Rg

bR̃
b
g (28) 

According to the analysis using the matrix chain rule, the attitude 
error of the right error model, defined in the LCEF frame, can be 
expressed as Rg

bR
b
gʹ. While the attitude error of the left error model, 

defined in the body frame (b-frame), can be expressed as Rbʹ
g Rg

b. Attitude 
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error mainly originates from the gyroscope’s measurement noise of the 
MEMS IMU, thus making the left error model more effective than the 
right error model.

Therefore, for the SINS/GNSS integrated navigation system in the 
LCEF frame, the left error model of the Lie groups SINS is more suitable.

3.2. Lie groups–based error equation

According to the analysis from the previous ijtf section, the LCEF 
frame Lie groups SINS left error model is more suitable for the INS/GNSS 
integrated navigation system. Therefore, using the LCEF frame Lie 
groups SINS left error model to derive the loosely coupled state equa
tions, the attitude, velocity, and position errors in the LCEF frame Lie 
groups SINS left error model are obtained as follows: 

τa
l = R̃

b
gR

g
b

τv
l = − R̃

b
gδVg

τp
l = − R̃

b
gδPg

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

(29) 

3.2.1. Lie groups–based attitude error equation
By differentiating both sides of equation (29) of the attitude error 

equation and combining it with the SINS attitude differential equation 
(10) in the LCEF frame, the attitude error equation can be derived as 
follows: 

ϕ̇l = − Ω̃
b
abϕl − δωb

ab (30) 

where Ω̃
b
ab = ω̃b

ab × . Note Ω̃
b
abas Ω̃

b
, ω̃b

ab as ω̃b in the following text.

3.2.2. Lie groups–based velocity error equation
By differentiating both sides of equation (29) of the velocity error 

equation, the following equation is obtained: 

τ̇v
l = −

˙̃R
b

gδVg
− R̃

b
gδV̇

g
(31) 

By differentiating the velocity differential equation from the SINS 
differential equation (10) in the LCEF frame, the following equation is 
obtained: 

δV̇
g
= δRg

bf
b
+ Rg

bδfb
− Ωg

agδVg (32) 

According to equation (20), writing matrix δRg
b as follows: 

δRg
b = − R̃

g
bϕl× (33) 

Substituting equation (33) into (32): 

δV̇
g
= R̃

g
bF

bϕl − Ω̃
g
agδVg

+ R̃
g
bδfb (34) 

where Fb = fb
× .

Substituting this into the original equation yields the velocity error 
equation: 

τ̇v
l = −

˙̃R
b

gδVg
− R̃

b
g

(
R̃

g
bF

bϕl − Ω̃
g
agδVg

+ R̃
g
bδfb

)

= Ω̃
b
gbR̃

b
gδVg

− R̃
b
g

(
R̃

g
bF

bϕl − Ωg
agδVg

+ R̃
g
bδfb

)

= − Fbϕl − Ω̃
bτv

l − δfb

(35) 

3.2.3. Lie groups–based position error equation
By differentiating both sides of equation (29) of the position error 

equation, the following equation is obtained: 

τ̇p
l = −

˙̃R
b

gδPg − R̃
b
gδṖg (36) 

Differentiating the position differential equation from the SINS dif
ferential equation (10) in the LCEF frame, the following equation is 
obtained: 

δṖg
= δVg

− Ωg
agδPg (37) 

Substituting the relevant equations into this, the position error 
equation is derived: 

τ̇p
l = −

˙̃R
b

gδPg − R̃
b
g

(
δVg

− Ωg
agδPg

)

= τv
l − Ω̃

bτp
l

(38) 

The derived equations for attitude, velocity, and position errors are 
based on the Lie groups error model in the LCEF frame as following. 
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ϕ̇l = − Ω̃
b
ϕl − δωb

τ̇v
l = − Fbϕl − Ω̃

b
τv

l − δfb

τ̇p
l = τv

l − Ω̃
b
τp

l

(39) 

4. Integrated navigation algorithm design and analyze

4.1. Lie groups–based integrated navigation algorithm

4.1.1. Lie groups–based state equation
According to equation (40), the Kalman filter state equation based on 

the Lie groups error model can be derived as follows: 

Ẋl = FlXl + GlWl (40) 

whereXl =
[

ϕl τv
l τp

l εb ∇b ]T;Fl, Gl, and Wl are the state matrix, 
noise matrix, and system noise, respectively, defined as follows: 

Fl =

⎡

⎢
⎢
⎢
⎢
⎣

− Ω̃
b

03×3 03×3 − I3×3 03×3

− F̂
b

− Ω̃
b

03×3 03×3 − I3×3

03×3 I3×3 − Ω̃
b

03×3 03×3
03×3 03×3 03×3 03×3 03×3
03×3 03×3 03×3 03×3 03×3

⎤

⎥
⎥
⎥
⎥
⎦

(41) 
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Gl =

⎡

⎣
− I3×3 03×3
03×3 − I3×3
09×3 09×3

⎤

⎦ (42) 

Wl =

[
wg
wa

]

(43) 

where wg denotes white noise in angular velocity measurement using the 
gyroscope, and wa denotes white noise in specific force measurement 
using the accelerometer.

4.1.2. Lie groups–based measurement equation
The difference in auxiliary velocity and position calculated by the 

inertial navigation system and satellite navigation system is selected as 
the measurement vector. The Lie groups–based measurement equation 
for SINS/GNSS is as follows: 

Zl = HlXl + Vl (44) 

where Zl represents the measurement vector, and Vl represents the 
measurement noise of GNSS.

The measurement vector Zl can be obtained by subtracting the 

auxiliary velocity vector V̂
g 

of SINS from the GNSS auxiliary velocity 
vector Vg of GNSS as well as subtracting the position vector P̂

g 
of SINS 

from the position information of GNSS Pg provided by the satellite 
navigation system. 

Zl =

[
V̂

g
− Vg

P̂
g
− Pg

]

=

[
δVg

δPg

]

(45) 

The measurement noise vector Vl includes the white noise of auxil
iary velocity vv and position vp from the GNSS. V =

[
vv,vp

]T. 

vv = vv + Ωg
agvp (46) 

where vv represents the white noise in velocity measurement from the 
GNSS. From the definition of the left error in Equation (29), matrix Hl 
can be obtained: 

Hl =

[
03×3 − R̂

g
b 03×3 03×3 03×3

03×3 03×3 − R̂
g
b 03×3 03×3

]

(47) 

4.2. Error propagation analysis

In the following discussion, the error propagation of LG-KF and EKF 
are compared, demonstrating the advantage of left error model in SINS/ 
GNSS integrated navigation.

The most common method in integrated navigation is EKF estab
lished in small-perturbation approximation, which may not converge 
under large misalignment. The failure of traditional navigation algo
rithm is primarily caused by the invalidation of navigation model. 
Invalidation is attributable to two key factors. First, the traditional 
navigation linear model is established in small-perturbation 

Fig. 1. Error propagation comparison.

Fig. 2. Flowchart of the LG-KF Algorithm.
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approximation, and the character of nonlinear navigation model is not 
accurately described in the linear models. Second, the parameter used in 
linear models is obtained using SINS through approximation. Large 
misalignment indicates that large error will be introduced into the 
navigation system if the attitude matrix is used as a part of the naviga
tion model parameter.

The error propagation of EKF[19] and LG-KF based on the state 
equation are shown in Fig. 1.

The state matrix of the EKF incorporates Ωg
ag(skew-symmetric matrix 

of earth rotation angular velocity ωg
ig), R

g
b(attitude matrix), and Fb(skew- 

symmetric matrix of specific force fb) as inherent parameters. Expo
nentially, R̃

g
b provided by SINS is not an efficient approximation of Rg

b 
under large misalignment. Hence, traditional EKF fails to estimate the 
misalignment angles ϕg. The LG-KF employing SE(3) formulations ex
hibits distinct state-space characteristics. Its mechanization directly in

tegrates F̂
b 

(accelerometer outputs) and Ω̂
b
ib (gyroscope outputs) as 

inherent parameter, decoupling state equation parameters from initial 
misalignment. This differential geometric architecture demonstrates 
enhanced robustness against nonlinear approximation errors induced by 
large misalignment. Consequently, ability of misalignment estimation is 
enhanced.

4.3. Algorithm design

This section presents the algorithm design of the LG-KF, transforming 
theoretical models to software components for HVPs. Aligned with the 
GNC cycle of HVPs’ navigation systems, Figure 2 delineates the work- 
flow of the navigation system:

The algorithm design is shown in Fig. 2. The thermal battery of HVP 
is activated after launch, before the navigation system initialized. When 
both IMU data and GNSS data are valid, in-flight alignment begins. Upon 
convergence of the in-flight alignment process, the initialized navigation 
states – including alignment attitude, GNSS velocity and position– are 
propagated into the SINS and to start SINS/GNSS integrated navigation.

Then the LG-KF integrated navigation algorithm run as follow: 

1. Establish LG process model and obtain state matrix as equation 
(41).
2. Time update. Equations are given as follows, which are the same as 
standard KF. 
{

X̂k/k− 1 = Φk/k− 1 X̂k− 1

Pk/k− 1 = Φk/k− 1Pk− 1ΦT
k/k− 1 + Qk− 1

(48) 

Where Φk/k− 1 ≈ I+ Fl(tk). 

3.Measurement Zk = Zl(tk)computation as equation(45) upon GNSS 
epoch detected.
4. Measurement equation computation as equation(47).
5.Measurement update and correction. Equations are given as fol
lows. 
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Kk = Pk/k− 1HT
k
(
HkPk/k− 1HT

k + Rk
)− 1

X̂k = X̂k/k− 1 + Kk
(
Zk − Hk X̂k/k− 1

)

Pk = (I − KkHk)Pk/k− 1

(49) 

As the time update and measurement update are the same as stan
dard KF, the computational cost is on the same magnitude as EKF.

Explicit pseudocode is attached in Appendix 1.

5. SINS/GNSS Integrated Navigation Experiment

To validate the algorithm design proposed in this paper, compre
hensive verification was conducted through numerical simulations and 
vehicle road tests. The simulation outcomes are shown in section 5.1, 
and the road test experiment results are analyzed in Section 5.2.

Fig. 3. Simulation trajectory of the guided projectile.

Table 2 
Parameters for SINS/GNSS.

Parameter Value Parameter Value

Gyroscope bias 200∘/h Accelerometer Bias 10 mg
Angular random walk 20∘/

̅̅̅
h

√ Accelerometer random noise 6 mg
Gyroscope scale factor 

error
120ppm Accelerometer scale factor 

error
240 
ppm

Gyroscope mounting 
error

6′ Accelerometer mounting 
error

6′

GNSS position error 8m GNSS velocity error 0.3 m/s

1ppm=10-6.

Table 3 
Initial error settings.

Parameter Number Parameter Number

Roll error 30◦ Position error 40 m
Pitch error 10◦ Velocity error 1.5 m/s
Yaw error 10◦ ​ ​
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Fig. 4. Simulation results for [30, 10, 10] degrees misalignment angles.

Fig. 5. Total velocity and position errors for [30,10,10] degrees misalignment angles.
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5.1. Experimental trajectory and parameters

Four methods are compared: the traditional Extended Kalman Filter 
(EKF), State Transformation Extended Kalman Filter (ST-EKF), 
quaternion-based integrated navigation algorithm (Quat-EKF), and Lie 
groups-based integrated navigation algorithm (LG-KF). The trajectory is 
shown in Fig. 3.

IMU and satellite navigation parameter setting are shown in Table 2.

5.1.1. Experiment in misalignment of [30◦, 10◦, 10◦]
The first experiment examines the precision of the four algorithms. 

The initial error settings are shown in Table 3.
The results are illustrated in Fig. 4.
As shown in Fig. 4, under the given misalignment angles of [30, 10, 

10] degrees, all four algorithms maintain their navigation functionality. 
Regarding attitude errors, all algorithms demonstrate convergence, with 

yaw angle convergence precision being lower than that of pitch and roll. 
Specifically, Quat-EKF and LG-KF show similar yaw angle errors, 
ranging from 1◦ to 2◦, while EKF and ST-EKF exhibit larger errors, 
around 6◦. The final pitch and roll errors for LG-KF are -0.102◦ and 
-0.407◦, respectively, while for Quat-EKF, they are 0.114◦ and -0.331◦, 
respectively. In terms of convergence accuracy for yaw and roll, Quat- 
EKF and LG-KF are similar and significantly outperform EKF and ST- 
EKF. The velocity and position errors of the four algorithms are shown 
as Fig. 5.

As the GNSS provide velocity and position measurements, the total 
errors in velocity and position for all four methods converge.

5.1.2. Experiment in misalignment of [140◦, 15◦, 15◦]
The second experiment examines the convergence of the four algo

rithms under large misalignment conditions. The initial error settings 
are shown in Table 4.

The results are illustrated in Fig. 6.
Simulation results indicate that traditional EKF fails to converge in 

attitude under large misalignment angles of [140, 15, 15] degrees, 
completely losing its attitude navigation functionality. Quat-EKF fails to 
converge on yaw angle, while pitch and roll errors reduce slightly but 
fail to converge stably, exhibiting fluctuations of ±50◦ between 50 and 
83 seconds. In comparison, the ST-EKF algorithm achieves convergence 
of pitch and roll errors to 0.193◦ and -1.282◦, respectively, and yaw to 

Table 4 
Initial error settings.

Parameter Number Parameter Number

Roll error 140◦ Position error 40 m
Pitch error 15◦ Velocity error 1.5 m/s
Yaw error 15◦ ​ ​

Fig. 6. Simulation results for [140,15,15] degrees misalignment angles.
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11.651◦. The LG-KF algorithm achieves convergence of pitch and roll 
errors to -0.141◦ and 0.213◦, and yaw to -0.257◦. Quat-EKF and LG-KF 
demonstrate navigation capabilities under large misalignment angles 
similar to [30, 10, 10] accuracy levels. The velocity and position errors 
of the four algorithms are shown as Fig. 7.

EKF and ST-EKF still exhibit large errors in velocity and position even 
when velocity and position data are provided by GNSS. This can be 
attributed to the divergence of inertial navigation attitude errors, which 
renders the inertial navigation information unreliable. Additionally, 
large linearization inaccuracies invalidate the filtering model, contrib
uting to the divergence of EKF and ST-EKF, as linearization errors are not 
considered in the inertial navigation error equations. By contrast, Quat- 
EKF and LG-KF demonstrate stable convergence of velocity and position 
errors.

5.1.3. Misalignment bias experiment comparison of four algorithms
The third experiment investigates the convergence range of the four 

algorithms. The algorithm uses 3,509 (29 × 11 × 11) sets of misalign
ment bias parameters to simulate the convergence behavior of LG-KF, 
EKF, Quat-EKF and ST-EKF. The yaw angle is set within the range of 
-140 to 140 degrees, with points sampled every 10 degrees (29 points). 
The pitch angle ranges from -15 to 15 degrees, with points sampled at 
intervals of 3 degrees (11 points). The convergency percentage changed 

Fig. 7. Total velocity and position errors for [140,15,15] degrees misalignment angles.

Fig. 8. Convergency percentage changes with roll misalignment.

Table 5 
Convergence range, precision, and time for four algorithms.

Algorithms Errors Initial error range 
for convergence/◦

RMS for 
convergence 
(1σ) /◦

Time for 
convergence /s

EKF Pitch 
error

±6◦ 0.531◦ 10

Yaw 
error

±6◦ 3.679◦ 10

Roll 
error

±10◦ 1.314◦ 20

Quat-EKF Pitch 
error

±15◦ 0.794◦ 20

Yaw 
error

±15◦ 1.940◦ 10

Roll 
error

±50◦ 0.567◦ 10

ST-EKF Pitch 
error

±15◦ 0.592◦ 15

Yaw 
error

±15◦ 6.061◦ 15

Roll 
error

±110◦ 2.516◦ 20

LG-EKF Pitch 
error

±15◦ 0.073◦ 10

Yaw 
error

±15◦ 0.878◦ 10

Roll 
error

±140◦ 0.475◦ 10
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with the roll misalignment of the four algorithms are shown in Fig. 12. 
For more detail of the bias experiment, please refer to appendix 4.

As is shown in Fig. 8, results of EKF converge with yaw and pitch 
misalignment errors no more than 6◦, and roll misalignment error no 
more than 10◦. When the roll misalignment exceeds 10◦, the conver
gency percentage of EKF decreased. ST-EKF and Quat-EKF performs 
better than EKF, and the LG-KF perform the best. All the results of Quat- 
EKF converge when the roll error 50◦, ST-EKF suit the misalignment of 
110◦, while proposed in this paper LG-KF works when the roll 
misalignment is 140◦.

The initial error range, precision and time for convergence of the four 
algorithms are summarized in Table 5.

The simulation results and Table 5 indicate that the LG-KF algorithm 
in the LCEF frame achieves effective convergence with the largest roll 
misalignment of 140◦. By contrast, the other three algorithms exhibit 
varying degrees of accuracy degradation when roll angle errors exceed 
110◦. The EKF, Quat-EKF, and ST-EKF algorithms exhibit a large number 
of divergent results. Meanwhile, the Lie groups algorithm achieves 
convergence of navigation attitude errors under large misalignment 
angles without significant degradation in convergence accuracy.

5.2. Car-mounted road test.

The road test was conducted in Xi’An on a vehicle platform using an 
INS/GNSS system. The INS system used MEMS gyroscope and acceler
ometer and the GNSS receiver was UR4B0 of BDStar navigation. The 
sampling frequency of the INS was set to 400 Hz, and the sampling 
frequency of the GNSS was 10 Hz. A main INS with ring laser gyroscope 
and quartz flexible accelerometer provided high-precision navigation 
information as a reference. The specific parameters are shown in Table 6
in appendix 3. A typical road experiment for 500s was carried out. First, 
the main INS performs initial alignment for 300 s when the car was 
parking. Then, the main INS shifts to the INS/GNSS integrated naviga
tion mode, and the car began to move forward on the road. When the car 
was moving, the power of MEMS INS was connected, and its output was 
received on the computer for 105s. After the road test, the IMU data and 
the GNSS data were loaded in real-time simulation software Links-RT 
and sent to the navigation embedded computer at 400 Hz through an 
industrial control computer Links-C3U. The four algorithms discussed in 
section 4.1 were loaded on the navigation embedded computer, and the 
results were shown in Figs. 11 and 12. The initial attitude of MEMS SINS 
was set as [140◦,15◦,15◦], while the attitude provided by the main INS 
was [0.206◦, -0.393◦, -5.292◦].

The road test trajectory in Kunming Road of Xi’An is shown is Fig. 9.
The facilities of road test are displayed in Fig. 10:
The results are illustrated in Fig. 11 and Fig. 12.
The attitude error obtained in the test are shown in Figs. 11 and 12. 

Overall, the road test yielded better results than simulations, with LG-KF 
demonstrating the best performance. The attitude error in LG-KF can 
rapidly converge to near 0◦, which is notably better than the other three 
algorithms. Moreover, the other three algorithms exhibit considerably 
lower convergence speeds, and the yaw error of EKF and Quat-EKF are 
not converge until the end of the test because the approximation in state 
model is not suitable for large misalignment angles.

The RMS of the attitude error from 50 s to 105 s is shown in Table 7. 
LG-KF demonstrates notable advantages over EKF, Quat-EKF and LG-KF. 
When the misalignment angle variance is [140◦,15◦, 15◦], the yaw ac
curacy is improved by 94.1%, 95.5%, and 88.1%, respectively. The roll 
accuracy is improved by 85.1%, 83.6 %, and 3.9 %, respectively, and the 
pitch accuracy is improved by 35.6%, 84.2 %, and 82.0 %, respectively.

6. Conclusion

This paper presents a Lie groups-based SINS/GNSS algorithm in the 

Fig. 9. Road test trajectory shown on the map.

Fig. 10. Equipment used in the road test.
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LCEF frame for integrated navigation of guided projectiles under con
ditions of large misalignment. Simulation experiments and a road test 
are conducted to compare traditional methods such as EKF, Quat-EKF, 

and ST-EKF with the LG-KF algorithm. LG-FK in the LCEF frame pro
posed in this paper outperforms among the four algorithms in large 
misalignment scenery.

Fig. 11. Road test results for [140,15,15] degrees misalignment angles.

Fig. 12. Total velocity and position errors in the road test.
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LG-KF in the LCEF frame presents high-precision convergence and 
strong robustness under large roll misalignment. The simulation and the 
road test both demonstrate that the Lie groups algorithm consistently 
converges with high accuracy when roll misalignment amount to 140◦, 
exhibiting notable navigational advantages among the four algorithms. 
This will help HVPs maintain stable integrated navigation when in-flight 
alignment accuracy degrades, addressing the challenges posed by poor 
IMU performance and extreme launch conditions.

Although simulation and the road test results confirm that the LG-KF 
algorithm in the LCEF frame effectively addresses integrated navigation 
challenges for guided projectiles under large misalignment angles, 
navigation result sometimes fails to converge in extreme misalignment 
(such as roll misalignment 180◦). Besides, the LG-KF algorithm may 
exhibit reduced robustness under extreme gyroscopic performance 
degradation scenarios, particularly when gyroscope bias instability ex
ceeds 2000◦/h or angle random walk surpasses 100◦/√h. In the future 
work, the algorithm should be improved to ensure the convergency in 

extreme misalignment. It is also worth noting that the algorithm’s per
formance—encompassing convergence time, convergence accuracy, and 
robustness against large misalignment angles—may vary depending on 
motion trajectories and IMU specifications, requiring case-specific 
analysis in practical applications.
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Appendix

Appendix 1

In this appendix, we provide the pseudocode for the algorithm proposed in this paper as Algorithm 1.

Algorithm 1 
LG-KF integrated navigation processing flow:.

Input: IMU Data Flow, GNSS Data Flow
Output: Attitude(Att), Velcity(Vel), Position(Pos)
Procedure Main()

InitPara() //System initialize
while SystemOperate do // Main Loop

if T_flag == 1 then //Timer-triggered Interrupt
imu ← GetImuData(IMU) // Get IMU data
gnss ← GetGnssData(GNSS)// Get GNSS data
if SystemTime < 10 then// In flight Alignment stage
InflightAlignment(gnss, imu)

else // integrated navigation stage
Att, Vel, Pos ← SINS(imu)
phi_LG ← CalculateLeverArm(imu, Att, Vel, Pos)
Xk ← StateUpdate(Xk, phi_LG)
Xk ← MeasurementUpdate(Xk, Zk)
Att, Vel, Pos ← AVPCompensate(Att, Vel, Pos, Xk)

end if
end if

end while
end Procedure

Appendix 2
In this appendix, we provide a detailed description of the trajectory, initial conditions, and sensor noise characteristics (e.g., bias, scale factor, noise 

level), along with their modeling approaches in the simulation.
In this simulation, we designed a near-parabolic trajectory lasting 83 seconds, with a launch latitude of 34.2◦, longitude of 108.9◦, altitude of 400 

meters, and an azimuth of 0◦. The highest point of the trajectory reaches an altitude of 7.8 km, and the distance from the launch point to the impact 
point is 22.199 km. The trajectory is shown in Fig. 3, with the launch point at the origin. Simulation data from 16 to 83 seconds is used for integrated 
navigation.

Table 7 
Attitude RMS in the road test in 50-105 s.

Roll error/◦ Yaw error/◦ Pitch error/◦

EKF 1.640 6.490 0.503
Quat-EKF 1.495 8.741 2.058
ST-EKF 0.235 3.243 1.805
LG-KF 0.245 0.389 0.324
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The velocity and attitude curves are as Fig. 13:

Fig. 13. velocity and attitude curves of trajectory.

The error model of IMU in Table 2 is shown as below:

1. error model of gyroscope. Gyroscope are angular rate sensor, and the relationship between true angular rate ωb
ib and measured values of gyroscope 

ω̃b
ib can be described as follows: 

ω̃b
ib = ωb

ib + δωb
ib (50) 

Where δωb
ib is given as follows: 

δωb
ib = bg + Sgωb

ib + Ngωb
ib + εg (51) 

Where bg is gyroscope bias;Sg is scale factor error matrix;Ngis the mounting error matrix of the gyroscope;εg is gyroscope noise. Sgand Ngare given 
as follow: 

Ng =

⎡

⎣
0 θg,xy θg,yz

θg,yx 0 θg,yz
θg,zx θg,zy 0

⎤

⎦ (52) 

Sg =

⎡

⎣
sg,x 0 0
0 sg,y 0
0 0 sg,z

⎤

⎦ (53) 

Where θg,() is non-orthogonal of two gyroscopes, sg,() is the scale factor of a single gyroscopes.

2. error model of accelerometer

Gyroscope are angular rate sensor, and the relationship between true specific force fb and measured values of accelerometer ̃f
b 

can be described as 
follows: 

f̃
b
= fb

+ δfb (54) 

Where δfb is given as follows: 

δfb
= ba + S1fb

+ S2f2 + Nafb
+ δg + εa (55) 

Where ba is accelerometer bias;Sa is scale factor error matrix;Nais the mounting error matrix of the accelerometer;εa is accelerometer noise.Saand 
Naare similar to Sgand Ng.

Appendix 3
In this appendix, we provide a detailed description road test, including sensor specifications, test trajectory, and data collection method.

1. Sensor specifications of road test. The sensor specifications of Main SINS and MEMS IMU are shown in Tabel 6.
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Table 6 
sensors precision of the Main SINS.

Parameter Main INS MEMS IMU

Gyroscope Bias 0.005∘/h 200∘/h
Gyroscope random walk 0.0008∘/

̅̅̅
h

√
20∘/

̅̅̅
h

√

Gyroscope scale factor error 20ppm 120ppm
Gyroscope mounting error 10″ 6′
Accelerometer bias 30ug 10 mg
Accelerometer noise 10ug 6 mg
Accelerometer scale factor error 10ppm 240 ppm
Accelerometer mounting error 10″ 6′

2. Work state of Main SINS and MEMS IMU. As is shown in Fig 10 The main SINS is mounted on the vehicle via an adapter plate, with a forward 
reference surface ensuring consistent alignment of the INS in both forward and upward orientations.

The reference ring laser gyroscope-based inertial navigation system (RLG-INS) and the MEMS-INS under test were both connected to GNSS signals, 
synchronized to satellite time. The INS and GNSS utilized a pulse synchronization method, where the GNSS receiver transmits a pulse synchronization 
signal to the INS via a TTL interface upon acquiring satellite signals. During integrated navigation, the INS data sampled at the rising edge of the PPS 
(Pulse Per Second) signal was combined with GNSS measurements to construct observation vectors for the LG-KF (Loose-GPS/Kalman Filter), enabling 
real-time fusion navigation.

3. Data collection and test method. The complete vehicle test data spans 15 minutes, with the starting point coordinates at (latitude: 34.24530029 
degree, longitude: 108.8961945 degree) and the endpoint at (latitude: 34.24209976 degree, longitude: 108.9019547 degree). For algorithm vali
dation, a straight-line segment from the middle of the test data was selected, meaning the MEMS-INS began navigation when the vehicle was already in 
motion. The initial velocity and position values of the MEMS-INS were provided by satellite navigation, while the initial attitude values were derived 
from the reference INS attitude with intentionally introduced errors: 15◦ in pitch/yaw and 140◦ in roll.

Fig. 14. Road test trajectory for 15 minutes.

The segment enclosed by the red box is the one used in the experiment, which is shown in Fig. 14.
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Appendix 4
The 3509 times of bias experiment attitude error results curve of all four algorithm and the experimental is shown below.
The diverging results are indicated by the gray line and the converge result are indicated by various color in the graph. The results of the LG-KF 

algorithm are illustrated in Fig. 15.

Fig. 15. Attitude errors of LG-KF over 3,509 simulations.

As is shown in Fig. 15, all results of the LG-KF algorithm converges in simulations. The roll angle error RMS is 0.475◦, pitch angle RMS is 0.073◦, 
and yaw angle RMS is 0.878◦.

The results of the EKF algorithm are illustrated in Fig. 16. 
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Fig. 16. Attitude error of EKF.

The EKF indicates a large number of divergent results under large initial misalignment angles, with only 518 results (14.8%) converging. The 
navigation accuracies of the converged results are as follows: yaw RMS: 3.679◦, roll RMS: 1.313◦, and pitch RMS: 0.531◦.

The results of the Quat-EKF algorithm are as Fig. 17: 
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Fig. 17. Attitude error of Quat-EKF.

The Quat-EKF indicates fewer divergent results than the EKF, with 2,435 results (69.4%) converging. The navigation accuracies of the converged 
results are as follows: yaw RMS: 1.940◦, roll RMS: 0.567◦, and pitch RMS: 0.794◦.

The simulation results using the ST-EKF algorithm are as Fig. 18: 
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Fig. 18. Attitude error of ST-EKF.

ST-EKF indicates a few divergent results. A total of 3576 out of 3,509 results (98.4%) converged, as indicated by the line in color in the graph. 
Navigation accuracies are as follows: yaw RMS: 6.061◦, roll RMS: 2.516◦, and pitch RMS: 0.592◦.

Data availability

Data will be made available on request.
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