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Abstract: The permanent magnet synchronous motor (PMSM) has been widely used in position control applications. Its per-
formance is not satisfactory due to the internal uncertainties and external load disturbance. To enhance the control performance of 
PMSM systems, a new method which has a fast performance and good robustness is proposed in this paper. First, a modified 
integral terminal sliding mode control is developed. It has a faster sliding surface and a continuous reaching law. Then the ex-
tended state observer technique is applied to measure the internal and external disturbances. Therefore, the disturbances can be 
compensated by a feedforward manner. Compared with other sliding mode methods, the proposed method has a faster response 
and a better robustness against system disturbances. In addition, the position tracking error can converge to zero in finite time. 
Simulation and experimental results reveal that a fast, high-precision and robust performance is realised under the proposed 
control method. 
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1  Introduction  
 

The permanent magnet synchronous motor 
(PMSM) is important in high-performance servo 
applications (e.g., machine tools, aviation and robots ). 
It has the advantages such as high power density, 
compactness and low inertia (Chen et al., 2015; Zeng 
et al., 2002). The proportional-integral (PI) controller 
has been extensively used because of its easy im-
plementation (Wang et al., 2018). However, achiev-
ing a satisfying control performance for PMSM sys-

tems is unrealistic only by the PI controller (Wai, 
2001; Yang et al., 2017), because the PMSM is a 
nonlinear system. In addition, it is affected by exter-
nal load disturbance and internal parameter variations 
in practical applications (Li et al., 2015; Yu et al., 
2005). 

To enhance the performance of PMSM servo 
systems, varieties of nonlinear control methods have 
been proposed, such as fuzzy logic control (Chaoui 
and Sicard, 2012), neural network control (El-Sousy, 
2010), and predictive control (Zhi et al., 2010). In 
El-Sousy (2010) and El-Sousy (2013), an intelligent 
neural network control method was designed to deal 
with the unmodeled parts of PMSM model. An adap-
tive fuzzy controller was developed to eliminate the 
interconnection effects of the PMSM in Barkat et al. 
(2011). In Nguyen and Jung (2018), a model predic-
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tive control (MPC) was developed to guarantee the 
stability and robustness for surfaced-mounted PMSM 
drives. In addition, it was verified that the MPC 
method had fast speed-tracking capacity and low 
switching frequency. The above methods have im-
proved the control performance of PMSM systems 
from different aspects. However, it should be noted 
that the design complexity and computational burden 
of these new methods are increased (Nguyen et al., 
2018). Moreover, how to generalize their designs into 
our application, the position control of PMSM, is a 
question. 

The sliding mode control (SMC) has been ap-
plied widely for its fast response and robustness 
(Zhang, 2016) to uncertainties. In general, the fol-
lowing three steps must be considered to design a 
SMC system: the choice of a sliding mode surface, the 
design of a kind of reaching law and finally the de-
termination of a control law. The conventional SMC 
usually has a linear sliding surface (SS). Conse-
quently, it can only guarantee the asymptotic stability, 
i.e., the response error cannot converge to zero in 
finite time. The terminal sliding mode (TSM) control 
possessing a nonlinear SS was introduced in Man et al. 
(1994). Unlike conventional SMC, the TSM method 
can guarantee a finite-time convergence. However, 
the control input of TSM control is singular in some 
cases. To solve this problem, a non-singular TSM 
(NTSM) has been proposed in Feng et al. (2002). 
However, the reaching law of NTSM is discontinuous 
and therefore a chattering phenomenon is inevitable. 
The boundary layer method has been adopted to re-
duce the chattering level, but it can lead to an as-
ymptotic stability. In Yu et al. (2005), a continuous 
NTSM (CNTSM) was developed by replacing the 
discontinuous reaching law of NTSM with a contin-
uous one (Al-Ghanimi et al., 2017). As a result, the 
chattering and singularity problems, which are the 
two main problems of the TSM control scheme (Feng 
et al., 2014), are solved to some extent. 

However, there are still two main issues relevant 
the usage of the CNTSM method:     

(1) The nonlinear SS makes it much slower to 
converge in comparison with the linear one. This 
phenomenon occurs especially when the system state 
is far away from the equilibrium.  

(2) A prior knowledge of the bound of lumped 
disturbance is required to obtain enough robustness. It 

is impossible in real applications. Therefore, the ro-
bustness is not satisfactory and the steady state fluc-
tuation is inevitable (Yang et al., 2013). 

To enhance system performance in the presence 
of multiple disturbance, the extended state observer 
(ESO) technique has been developed (Han, 2009). It 
has been applied successfully in motion control of 
PMSM (Bobtsov et al., 2017; Feng et al., 2004; Su et 
al., 2005), robotic systems (Su et al., 2004) and ma-
chining processes (Wu et al., 2007). It regards the 
lumped disturbance as a new system state and can 
estimate both disturbance and states (Saadaoui et al., 
2017). Therefore, a feedforward compensation can be 
introduced into the controller design. Jiang and Zhou 
(2019) proposed a robust and fast TSM (RFTSM) 
control method by combing the fast TSM control with 
the ESO method. Simulation results show that the 
RFTSM method has a fast, precise and robust per-
formance in position tracking control of PMSM 
drives. However, experimental verifications are ab-
sent and the positioning performance of PMSM 
drives is not verified. In addition, the singularity 
problem is not avoided in RFTSM design. 

In this paper, a fast continuous integral sliding 
mode (FCISM) control is proposed for PMSM sys-
tems. Then combining the FCISM control with the 
ESO technique, we propose a composite robust 
FCISM (RFCISM) method. The proposed RFCISM 
method remains the advantages of RFTSM such as 
finite-time stability and disturbance rejection capa-
bility. Besides, It can start on the sliding surface 
therefore the reaching phase is eliminated and a faster 
response can be guaranteed. In addition, the RFCISM 
solve the singularity problem in RFCISM control 
effectively. Simulation and experimental results are 
provided to validate the effectiveness of the proposed 
method. 

The rest of the paper is organised as follows. 
Section 2 shows the control scheme design. The 
classical mathematical model of PMSM is built and 
the proposed control method is applied in Section 3. 
Simulation and experimental results are presented in 
Section 4. Finally, Section 5 gives the concluding 
remarks. 
 
2  Controller design 
 

A second-order nonlinear dynamic system with 
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external disturbance can be expressed as 

 1 2

2 ( ) ( )
x x
x g x u f x d
=

 = + +





 (1) 

where x=[x1, x2]T is the system state vector, g(x) and f 
(x) represent nonlinear functions of x, d is the lumped 
disturbance consisting of both internal uncertainties 
and external load disturbance, and the scalar u is the 
control input signal. Let xref be the position reference 
and define the tracking error as e=x1－xref. The con-
trol purpose is to obtain a control input u such that the 
system position output x1 tracks the position reference 
fast and precisely. 

2.1 FCISM controller design 

The SS of NTSM introduced in Feng et al. (2002) 
can be described as 

 / 0m ns e eβ= + =  (2) 
where 0<β<1 is a design constant, and both m and n 
are positive odd integers satisfying n<m<2n. Then, 
the control input u does not have terms with negative 
fractional powers, which may lead to a singularity. 
However, the reaching law of NTSM has a switching 
term as follows 

 sgn( )s sη= −  (3) 
where η>0 is a constant to be designed, and sgn rep-
resents the sign function. It is evident that this type of 
reaching law will lead to a chattering control input. To 
alleviate the chattering phenomenon, the boundary 
layer approach (Baik et al., 2000) was incorporated 
into NTSM. However, choosing the width of bound-
ary layer is not easy and the performance of disturb-
ance rejection is sacrificed (Wang et al., 2017). 

Retaining the non-singular and finite-time SS, 
CNTSM control is proposed by replacing the discon-
tinuous reaching law with a continuous one as follows 

 ( )0 0/
1 2 sgnq ps k s k s s= − −  (4) 

where k1 and k2 are positive design constants, and 
both p0 and q0 are positive odd integers satisfying 
p0>q0. As a result, the derived control input is without 
any negative fractional power therefore non-singular 
and continuous therefore chattering-free. However, 
the following equation can be deduced according to 
(2) 

   /
/

1 n m
n me e

β
= −  (5) 

It is obvious that the absolute value of e  is much 

smaller compared with /
/

1 m n
m ne e

β
= −   when e is far 

away from zero. In other words, the convergence rate 
of nonlinear SS is slower than that of linear SS. Note 
that the result completely reverses when e is close to 
zero. 

A fast integral SS is designed as follows 

 1 2
I I 0

( )
t

s e e e dγ γβ α τ τ= + + ∫  (6) 

To obtain a fast convergence rate as mentioned above, 
γ2 is defined as  

 
I I
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where βI, αI, γ1 and γ2 are positive parameters with 
γ1>1, mI, nI are positive odd integers with mI > nI, and 
δ is the switching value. Combining SS (6) and 
reaching law (4), a novel FCISM method for system 
(1) is proposed as follows 

 
( )
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where k1I, k2I, q0I, p0I are the reaching law parameters 
of FCISM controller with p0I>q0I, the odd integer q0I 
is modified as follows for finite-time stabilization 

 
0I

0I

0      1

0      1

q s

q s

 > ≥


= <
  

(9) 

Remark 1: The SS of conventional integral 
terminal sliding mode (ITSM) control in Chiu (2012) 
can be expressed as  

 c c/
c c c 0

( )
t n ms e e e dβ α τ τ= + + ∫  (10) 

with βc, αc, nc, mc are the same as βI, αI, nI, mI in 
equation (6), respectively. When the system states 
reach the SS (i.e., s=sc=0), the following equation can 
be derived from the proposed SS (6) 

 1 I I/
I I 0

( )
t m ne e e dγβ α τ τ= − − ∫  (11) 

and the following equation can be derived from 
equation (10) 

 c c/
c c 0

( )
t n me e e dβ α τ τ= − − ∫  (12) 

Assume that βI=βc and αI=αc, one can see that the 
absolute value of e  in equation (12) is smaller com-
pared with that of equation (11) when e is far away 
from zero. In other words, the convergence rate of 
conventional method is slower than that of the pro-
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posed method when e is far away from zero. This will 
also be validated by the following simulations and 
experiments. 

Remark 2：Non-singularity and fast response 
are two main advantages of ITSM control. We can 
enable the system states to start on the SS s=0 by 

adjusting the initial value of 2

0
( )

t
e dγ τ τ∫ . Therefore, 

reaching phase can be eliminated and fast response 
can be obtained. In addition, one can see from ex-
pression (8) that there is no negative fractional power 
in the control law. In other words, the proposed con-
trol scheme is non-singular. 

2.2 RFCISM controller design 

To improve the disturbance rejection property of 
this system, an ESO technique is incorporated to 
estimate the lumped disturbance. The estimated dis-
turbance acts as a feedforward compensation term. 

According to Miklosovic and Gao (2004), a 
second-order linear ESO for system (1) can be de-
signed as follows 

 
2 2 2

2
2 2

ˆˆ ˆ2 ( ) ( )

ˆ ˆ( )

x d p x x g x u

d p x x

 = − − +


= − −





 (13) 

where 2x̂  and d̂  are the estimate of x2 and d, respec-
tively, and −p is the desired double pole of the ESO 
with −p<0. The estimated disturbance will converge 
to the real lumped d asymptotically. The estimation 
error is defined as 

 ˆd d d= −  (14) 

Note that d̂  often contains some bounded noise in 
real applications and thus the estimation error is 
bounded by a constant 

 d ε<  (15) 

with ε is a positive value. 
Combing the FCISM and the ESO technique, the 

RFCISM method is developed as follows 
 1

0
ˆ( )u u g x d−= −  (16) 

Compared with the control law (8), control law (16) 
has a disturbance compensation term. Therefore, it 
has a better disturbance rejection property and a 
smaller steady state fluctuation.  

Theorem: For system (1), if the control input u 
is designed as (16) and the gain satisfies k2I ≥ ε, the 
tracking error e and its first-order derivative e  will 

converge to zero in finite time. 
Proof: Choosing a Lyapunov function as 

 21
2

V s=  (17) 

Then the derivative of the Lyapunov function is 
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Substituting control law equation (16) into equation 
(18) yields 

{
( )

}
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(19) 
If 1s ≥ , equation (19) can be rewritten as 
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If 1s < , equation can be rewritten as  

 

( )
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Therefore, the condition for Lyapunov stability is 
satisfied. This completes the proof. 
 
3 Application in PMSM servo systems 
 

Taking the rotor coordinates dq as reference 
coordinates, the mathematical model of sur-
face-mounted PMSM can be expressed as follows (Li 
and Liu, 2009) 
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d s d r s q s d

q s q r s d s q r r

e t q

r e r L
p p

u L i L i R i

u L i L i R i
T K i
J BT T
n n

ω

ω ψ ω

ω ω

 = − +


= + + +


=

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





 (22) 

where 
ud,uq d and q axis stator voltages, respectively; 
id, iq d and q axis stator currents, respectively; 
Ls stator inductance; 
Rs stator resistance; 
ψr the normal value of flux linkage of rotors; 
ωr electrical angular velocity of rotors; 
Te electrical magnetic torque; 
np number of pole pairs; 
Kt torque constant; 
J system moment of inertia; 
B viscous friction coefficient; 
TL load torque. 

The three-loop control structure of PMSM sys-
tems based on field oriented vector control strategy is 
shown in Fig. 1. This cascade structure includes a 
position loop, a speed loop and two current loops. In 
this paper, the position loop and the speed loop are to 
be unified (herein after called position-speed loop). 
Usually, to attenuate the couplings between speed and 
current, d-axis reference current i* 

d  is set to 0. So 
taking the angular position and velocity as the system 
state variables, the state-space model can be ex-
pressed as: 

 
r r

p t p
r q r L

n K nBi T
J J J

θ ω

ω ω

 =



= − −






 (23) 

where θr and ωr represent the electrical angular posi-

tion and velocity of rotor, respectively. Adopting the 
control input i* 

q , the motor state-space model can be 
rewritten as 

 *
r r

r q rai b d
θ ω

ω ω

 =


= + +





 (24) 

which is similar as (1) in form, where 
p tn K

a
J

= , Bb
J

= − , *( )p t p
q q L

n K n
d i i T

J J
= − − −  is 

the system disturbance. 
To have a comparison, the CNTSM control is 

employed for PMSM systems and  its control law can 
be described as  

 0 0/* 1 1 2 /
1 2( )q p m n

q r ref
ni a b k s k s e
m

ω θ β− − −= − + + − +

   

 (25) 
where θref is the reference position, r refe θ θ= − , 

r refe ω θ= −  and s is designed as (2). 
According to equation (8), the FCISM control 

law for PMSM can be expressed as 
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where s is designed as (6). According to equation (16), 
the RFCISM control law can be expressed as 

 
( )

1 2

0I 0I

1* 1
I 1 I

/
1I 2I

ˆ     sgn

q r ref

q p

i a b e e e

k s k s s d

γ γω β γ α θ−− = − + + −
+ + + 





 (27) 
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Fig. 1 Block diagram of field oriented vector control for PMSM 
4 Results and discussion 
 

To verify the performance of the proposed 
method, simulations and experiments are carried out 
in MATLAB/Simulink and DSP-based test environ-
ment, respectively. For comparisons, three methods 
are applied for the PMSM position control system. 
They are CNTSM, FCISM and RFCISM. The satu-
ration limit of control input i* 

q  is ±30 A. Note that 
every control algorithm obtains relative good per-
formance by adjusting its parameters. Parameters of 
the PMSM are shown in Table 1. 

 
Table 1 Parameters of the PMSM 

Parameters Values 
Rated power 1.5 KW 
Rated torque 14.32 Nm 
Rated speed 1000 rpm 

Stator resistance 1.79 Ω 
Pole pairs 4 

Torque constant 2.45 Nm/A 
System inertia 1.792×10-3 kg.m2 

Viscous coefficient 9.403×10-5 Nm.s/rad 
Stator inductance 6.68×10-3 H 

Flux linkage 0.4083 Wb 

 

4.1 Simulation results 

The PMSM tracking system under the afore-
mentioned three control schemes is simulated by 
MATLAB/Simulink R2017a. The position reference 
is θ*=30cos(π/2t) deg, which can lead to a relative 
good performance for CNTSM control. To demon-
strate the disturbance rejection ability of the proposed 
method, external load torque TL=30 Nm is added at 
t=2 s and removed at t=3 s. The PI parameters of both 
current loops are the same: the proportional gain Kp 

=150 and the integral gain Ki =750. 
The parameters of CNTSM are selected as: 

k1=200, k2=200, q0=1, p0=5, m=9, n=5, β=1/500. The 
simulation results of CNTSM are shown in Fig. 2. 
One can see that the tracking error converges to zero 
in finite time and there is no singularity in the control 
input i* 

q . However, we find that the convergence rate is 
slow. In addition, there are obvious fluctuations in Fig. 
2a when the external disturbance is added or re-
moved. 

The parameters of FCISM in the linear phase are: 
βI=1/18, αI=50, γ1=1.7, k1I=300, k2I=300, nI=1, mI=5, 
q0I=1, p0I=5, δ=0.03. The simulation results of 
FCISM are shown in Fig. 3. It is obvious that the 
convergence time of FCISM is much shorter than that 
of CNTSM. But the fluctuations of tracking error still 
exist due to external disturbance. Moreover, we can 
see from Fig. 3b that the control input i* 

q  does not act 
effectively to suppress the disturbance. 
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Fig. 2 Tracking performance of CNTSM (simulation). (a) 
Position response, (b) control input i* 
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Fig. 3 Tracking performance of FCISM (simulation). (a) 
Position response, (b) control input i* 

q  
 

For RFCISM, the pole of ESO is −p=−50000 and 
the other parameters are the same as those of FCISM. 
The simulation results of RFCISM are shown in Fig. 
4. One can see that a fast and high-precision control 
performance is achieved. Additionally, the disturb-
ance effect is eliminated effectively. The reason can 
be found in Fig. 4b and 5. We can see from Fig. 5 that 
the ESO can estimate disturbance accurately. Hence, 
the absolute value of control input can increase re-
markably to depress the disturbance as shown in Fig. 

4b. Fig. 6 shows the position response under RFCISM 
with perturbation in system inertia. J0=1.792×10−3 
kg.m2 is the initial value of system inertia. It can be 
seen that the transient response remains fast and ac-
curate regardless of the internal parameter variations. 
In addition, the tracking error of PMSM systems 
under flux linkage variations is shown in Fig. 7. 
ψr0=0.41Wb is the nominal value of rotor flux. It can 
be observed that there is almost no effect on the 
tracking performance under different rotor flux. Thus, 
we can easily conclude that the proposed method has 
a strong robustness against external disturbance and 
internal uncertainties. 
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Fig. 4 Tracking performance of RFCISM (simulation). (a) 
 Position response, (b) control input i 
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(b) 
Fig. 5 Estimated disturbance values of ESO and real dis-
turbance values(simulation). (a)Real disturbance value, 
(b)estimated disturbance value 
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Fig. 6 Tracking performance of RFCISM under system 
inertia variations (simulation) 
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Fig. 7 Tracking performance of RFCISM under flux link-
age variations (simulation) 

4.2 Experimental results 

To further evaluate the effectiveness of the 
RFCISM method, an experimental setup for position 
control of the PMSM was built. Fig. 8 shows the 
experimental test setup. The real-time emulator con-
tains a DSP TMS320F28335PGFA. The function of it 
is to provide a MATLAB/Simulink programming 
environment. The whole algorithm, including posi-
tion-speed controller, Clarke transform, inverse Park 

transform and so on, is implemented by 
MATLAB/Simulink. Then, all of those algorithms are 
converted into DSP code. Next, the gate drive is sent 
from DSP to the driver of PMSM. The experimental 
data can be collected on the host computer. All of the 
processes are supported by a real-time simulation 
software named Links-RT. The sample time of posi-
tion-speed loop and current loop are 1 ms and 0.1 ms, 
respectively. An incremental position encoder is used 
to measure the rotor speed and absolute rotor position. 
Hall-effect devices are used to measure the phase 
currents.  

 

 
Fig. 8 Experimental test setup 
 

The parameters of CNTSM are selected to be: 
k1=150, k2=150, q0=1, p0=5, m=9, n=5, β2=1/120. The 
PI parameters of both current loops are the same: the 
proportional gain Kp =5.7 and the integral gain Ki=8.6. 
The parameters of FCISM are: βI=1/180, αI=200, 
γ1=1.7, nI=1, mI=5,k1I=250, k2I=250, q0I=1, p0I=5, δ=1 
in the nonlinear phase. The PI parameters of both 
current loops are the same: Kp =7.5 and Ki =12.5. For 
RFCISM, the pole of ESO is selected as −p=−35000 
and the other parameters are the same as those of 
FCISM. 

First, we demonstrate the positioning perfor-
mance of the proposed RFCISM. The position refer-
ence is set to θ*=70 deg, which can lead to a relative 
good performance for CNTSM control. The perfor-
mances of three schemes are show in Fig. 9 and 
summarized in Table 2. It is obvious that all the three 
control schemes can achieve finite-time stabilization, 
but the RFCISM can depress the overshoot and 
shorten the settling time effectively. 
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Fig. 9 Positioning performances of three methods for tar-
get position 70 deg (experiment) 
 
Table 2 Positioning performance comparisons of three 
control schemes (experiment) 

Control schemes Overshoot(%) Settling time(s) 
CNTSM 10.0 0.42 
FCISM 35.7 0.23 

RFCISM 14.2 0.22 
 

Then, the tracking performance of the proposed 
RFCISM is demonstrated. The position reference is 
θ*=30cos(π/2t) deg, which is the same as that of 
simulation. And load torque TL=15 Nm is added at t=2 
s and removed at t=2.5 s. The experimental results of 
CNTSM, FCISM, RFCISM are shown in Fig. 10–12, 
respectively. One can see that they match the simula-
tion results well. The proposed RFCISM has a fast 
and precise tracking performance and a good property 
of robustness. 
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Fig. 10 Tracking performance of CNTSM (experiment). (a) 
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Fig. 11 Tracking performance of FCISM (experiment). (a) 
Position response, (b) control input i* 
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Fig. 12 Tracking performance of RFCISM (experiment). (a) 
Position response, (b) control input i* 

q  
 

Next, Fig. 13 shows the tracking error of the 
proposed method when system inertia varies. We can 
see that the convergence rate becomes a little slower 
with the increase of the system inertia. However, the 
transient response remains fast and accurate regard-
less of the internal parameter variations. Thus, we can 
conclude that the proposed method has a strong ro-
bustness against internal uncertainties. 
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Fig. 13 Tracking performance of RFCISM with perturba-
tions in system inertia (experiment) 

Finally, to validate the tracking range of the 
proposed method, three different position references 
are adopted. They are θ*=30cos(π/2t) deg, 
θ*=60cos(π/2t) deg and θ*=90cos(2π/3t) deg. Fig. 14 
shows the experimental results. We can see that the 
overshoot and the settling time increase with the in-
crease of amplification or frequency. However, the 
tracking performance remains desirable in all the 
cases. It is evident that the proposed control system 
has superior performance in tracking a wide range of 
target position. 
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Fig. 14 Tracking errors of RFCISM for different position 

references (experiment) 

4.3 Discussion 

To make comparisons clearly, the simulation 
tracking performances of three methods are summa-
rized in Table 3. It can be observed that the settling 
time of RFCISM is reduced by 72.9% compared with 
the CNTSM method. And the steady tracking error is 
reduced by 90.9%. The experimental tracking per-
formances are summarized in Table 4. We can see that 
experimental results match simulation results well. 
And the settling time, steady tracking error and 
maximum fluctuation are reduced by 85%, 58.7% and 
53.9%, respectively. Thus, we can conclude that the 
RFCISM control can realize faster and higher track-
ing performance than the conventional CNTSM 
method. In addition, the proposed method has supe-
rior robustness with respect to internal uncertainties 
and external disturbance. 

 
Table 3 Tracking performance comparisons of three con-
trol schemes (simulation) 

Control schemes Settling time (s) Steady tracking 
error (deg) 

CNTSM 1.7 0.11 
FCISM 0.47 0.11 

RFCISM 0.46 0.01 
 

Table 4 Tracking performance comparisons of three con-
trol schemes (experiment) 

Control 
schemes 

Settling 
time(s) 

Steady 
tracking 

error (deg) 

Maximum dis-
turbance fluctu-

ation (deg) 
CNTSM 1.2 1.5 3.21 
FCISM 0.18 1.67 3.09 

RFCISM 0.18 0.62 1.48 
 
It should be noted that there is still some chat-
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tering in the control signals as shown in results. 
However, it is well known that power converters have 
only the on–off operation mode. Therefore, chattering 
does not cause difficulties for practical electric drives. 
To eliminate the chattering phenomenon in PMSM 
systems, the reaching law should be improved further 
in the next work. 

 
5 Conclusion 
 

A fast and robust sliding mode control is pro-
posed for motion control of PMSM servo systems. 
The contributions of the proposed controller can be 
listed as follows 

(1) The conventional integral SS is modified so 
that a faster convergence can be obtained. 

(2) A continuous reaching law is applied in the 
controller design. Consequently, the chattering prob-
lem of the conventional SMC can be solved to some 
extent. 

(3) The ESO technique is adopted to estimate 
and compensate system disturbances. So the dis-
turbance rejection capability of PMSM systems can 
be improved remarkably. 
Simulation and experimental results show that the 
proposed RFCISM has fast and accurate performance 
in both positioning and tracking. In addition, a good 
robustness against inertial parameter variations and 
external load disturbance is obtained. The new control 
scheme can be applied to other relevant servo sys-
tems. 
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