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Human–robot interactive control based
on reinforcement learning for gait
rehabilitation training robot

Guo Bingjing1,2 , Han Jianhai1,2,3, Li Xiangpan1,2 and Yan Lin4

Abstract
A human–robot interactive control is proposed to govern the assistance provided by a lower limb exoskeleton robot to
patients in the gait rehabilitation training. The rehabilitation training robot with two lower limb exoskeletons is driven by
the pneumatic proportional servo system and has two rotational degrees of freedom of each lower limb. An adaptive
admittance model is adopted considering its suitability for human–robot interaction. The adaptive law of the admittance
parameters is designed with Sigmoid function and the reinforcement learning algorithm. Individualized admittance
parameters suitable for patients are obtained by reinforcement learning. Experiments in passive and active rehabilitation
training modes were carried out to verify the proposed control method. The passive rehabilitation training experimental
results verify the effectiveness of the inner-loop position control strategy, which can meet the demands of gait tracking
accuracy in rehabilitation training. The active rehabilitation training experimental results demonstrate that the personal
adaption and active compliance are provided by the interactive controller in the robot-assistance for patients. The
combined effects of flexibility of pneumatic actuators and compliance provided by the controller contribute to the training
comfort, safety, and therapeutic outcome in the gait rehabilitation.
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Introduction

Robot-assisted gait rehabilitation solutions, as therapeutic

adjuncts to facilitate clinical practice, have been demon-

strated the effectiveness for patients suffering from

neurological impairments such as stroke and spinal cord

injuries.1–3 Gait rehabilitation training robots can be grouped

as end-effector driven and joint driven robots according to

their mechanisms.4 For the end-effector driven robots (e.g.

Gait Trainer,5 Haptic Walker,6 and LokoHelp7), only the

patient’s soles are fixed to and guided by the robot’s foot

plates. Joint driven type (e.g. Lokomat,8 Lower extremity

powered exoskeleton (LOPES),9 Active leg exoskeleton

(ALEX),10 Hybrid assistive limb (HAL),11and Lower extre-

mity rehabilitation robot (LERR)12) has leg joints that match

those of the patient’s legs. Actuators are placed at the joints

of the robot control joint motions to mimic normal walking

patterns, providing the synchronized movement for the
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lower extremity joints of patients. Therefore, the wearable

robot of multi-joint driven type is most suitable for patients

in the gait rehabilitation training because of the physical

coupling between them. However, there exist motion cou-

pling and interaction between exoskeleton mechanism and

human lower limbs. The wearer and exoskeleton form a

closed loop as a human–robot cooperation system.

Human–robot coordination is no longer a master–slaver rela-

tionship but a partnership of mutual perception and cooper-

ation. Subsequently, the control strategy for the cooperation

system develops from trajectory tracking control to interac-

tive control, such as compliant control, patient-cooperative

control, assist-as-needed (AAN).13 Interactive control based

on perceiving patients’ motion awareness is a hot and diffi-

cult research topic of rehabilitation training robots.

Literature has suggested that patients should be encour-

aged to participate actively and the role of rehabilitation

robots should be to only scaffold or support when it is

required for an effective treatment.14,15 From this point of

view, interactive control suggests that the robots only sup-

ply as much effort as a patient needs to accomplish reha-

bilitation training tasks by assessing his or her performance

in real-time16,17; whereas, trajectory tracking control is pri-

marily used for early stage rehabilitation when patients

have very weak muscle strength.

Assistance from robot is expected to be intelligently

adjusted according to the patients’ physical conditions and

efforts in rehabilitation, so as to encourage their voluntary

participation. There is energy transfer between patients and

rehabilitation robots in the interactive system, which is rep-

resented by the dynamic coordination of position and force.

Three groups of interactive control schemes are widely used.

They are hybrid force–position control, impedance control,

and admittance control.18 Hybrid force–position control

takes into consideration the joint trajectories and interaction

forces between the wearer and exoskeleton. It splits the task

space into two complementary subspaces using a selection

matrix. A position control strategy is implemented in one of

subspaces and a force control in the other. For example, in

the control of the ALEX,10,19 the interaction forces between

the wearer and ALEX are measured through two force/tor-

que sensors mounted at the thigh and shank. The basic idea

of impedance control is to regulate the dynamic relation

between the wearer and exoskeleton by relating the position

error (e.g. joint angles) to the interaction force/torque

through mechanical impedance. For instance, in the control

of Lokomat,20,21 the outer-loop is composed of position

feedback and the inner-loop is of force feedback. The adjus-

table range of the reference trajectory is established accord-

ing to the patient’s joint angle information. Correcting force/

torque is generated by the angle error by impedance algo-

rithm for the robot. The stiffness parameter K in the impe-

dance algorithm is changeable to provide the robot with

adjustable assist torque to realize the ANN control. Xiong

et al.22 propose a hierarchical structure of the control system.

It allows the execution of sequence of switching control

methods: position, force, force/position, and impedance.

Force/position control is used to deal with both instant and

sustaining spasms of patients for safety. Impedance control

is employed in human–robot interactions to help the patient

achieve functional movements with torque just as much as

needed. In brief, for the impedance algorithm, human–robot

interaction information is used for inner-loop control, while

the outer-loop is position control, so ultimately the patient

adapts to the predefined trajectory of the robot rather than

the robot following the patient. In active rehabilitation train-

ing, another emphasis is placed on the robot providing a

certain amount of damping but following patients, providing

safe and compliant interactive control, and so scholars put

forward admittance control. The admittance controller takes

an interaction force as input and reacts with a displacement.

The human–robot interaction force transforms into the mod-

ification of the desired trajectory to track the patient’s

motion intention. For example, Zhang et al.23 developed a

compliant ankle rehabilitation robot (CARR) actuated by

four Festo Fluidic muscles (FFM) with admittance controller

in task space. The adaptation law is proposed to change the

admittance parameters based on real-time ankle posture and

interaction torque. It adaptively modifies the predefined tra-

jectory by the admittance controller to ensure training safety

by avoiding excessive interaction force. Liu et al.24 proposed

a control algorithm that used the admittance characteristics

between the force and velocity to realize the coordinated

swing movement of the wearer and lower limb exoskeleton

robot driven by hydraulic cylinders. Research shows that

admittance control can effectively reduce interaction force

by identifying the wearer’s motional intention and realize

human–robot coordination of rehabilitation training or

assisted walking. Human–robot interaction in the course of

work is a time-varying dynamic process, fixed controller

parameters cannot reach the actual need of dynamic interac-

tion, so the research focus in recent years is mainly on how to

effectively adjust the parameters, that is, adaptive impedance

or adaptive admittance control strategy.

A new adaptation law is proposed in this study. Rein-

forcement learning is introduced into the parameters adjust-

ing process. Based on the learning algorithm, an admittance

model including patient’s personal characteristics is estab-

lished for the interactive control in active rehabilitation

training. Our group developed a pneumatic wearable lower

limb exoskeleton robot. Pneumatic actuators provide a cer-

tain degree of passive compliance, while the proposed

admittance control algorithm based on reinforcement learn-

ing provides active compliance by adapting robot behavior

to patients. The combined effects of flexibility of actuators

and compliance of control can improve the training com-

fort, safety, and therapeutic outcome in the gait rehabilita-

tion. The robot is capable of providing assistance at low

compliance level to severely impaired subjects and can

adapt the compliance to an increased level for subjects with

less severe impairments.
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Pneumatic driven gait rehabilitation
training robot and force/position detection

The gait rehabilitation training robot consists of a weight-

reducing suspension device, a weight support mechanism, a

hip adjustment mechanism, two exoskeletons of lower-

limb, and a treadmill,25 as shown in Figure 1(a).

Exoskeleton assists patients and coordinates with the tread-

mill speed to complete repetitive gait rehabilitation training.

The two actuated leg exoskeletons are attached to the patients’

legs. Based on the bionic idea, the unilateral lower extremity

exoskeleton is a two-degree-of-freedom (2-DOF) linkage

mechanism with a hip joint and knee joint rotating in sagittal

plane considering that human walking motion is mainly in the

sagittal plane. The linkage mechanism is actuated by pneu-

matic cylinders to rotate around the axis of each joint to induce

flexion and extension movements to realize the organic com-

bination of rigid support and pneumatic flexible drive. In

addition, the weight-reducing suspension mechanism par-

tially reduces the load of patient’s lower limbs and balances

the height change of the center of gravity during walking.

The linear potentiometer is installed on each cylinder and

the joint angle is calculated by the geometric relationship of

the mechanism. A human–robot contact force detection

device is installed on the thigh linkage of the robot, as shown

in Figure 1(b), which consists of inner ring, outer connecting

block, and symmetrically arranged film pressure sensors

(FSRs). The inner ring which is tied to the lower limb of the

patient moves with the affected limb, while the outer con-

necting frame is fixed on the robot’s thigh. The inner ring

convex mechanism is matched with the groove on the outer

connecting block, and the FSR sensors are installed inside.

There are two FSR sensors installed in the front and back

sides, respectively. When the gait rehabilitation training

robot is not synchronized with the human lower limb move-

ment, the human–robot contact force in the sagittal plane is

measured by the FSRs in real time.

Interactive active compliance control
strategy based on admittance model

Determination of human–robot interactive
model—Admittance model

Seen from the instantaneous power flow between two or

more physical systems, physical systems come in only two

types: admittances, which accept effort (e.g. force) inputs

and yield flow (e.g. motion) outputs; and impedances,

which accept flow (e.g. motion) inputs and yield effort

(e.g. force) outputs.26 For two physical systems in contact

with each other, the emphasis of their fusion characteristics

is mutual compensation: if the environment is impedance,

the robot should show admittance characteristics and vice

versa. The patient is regarded as the environment to robot

in the rehabilitation task. When the patient has active walk-

ing consciousness, the affected lower limb has certain

movement ability. The uncoordinated movements between

the robot and the patient exert the contact force, so the

environment has impedance characteristics. Further, the

design of the robot controller should eliminate the contact

force, takes the contact force as input and reacts as the

motion adjustment. Therefore, the interactive model
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hip adjustment mechanism

weight support mechanism

exoskeleton

displacement 
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cylinder
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Figure 1. Structure scheme of gait rehabilitation robot: (a) mechanism layout and (b) human–robot contact force detection device
installation in robot.
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between the two physical systems (e.g. the patient and the

robot) is of admittance characteristics, as shown in Figure

2. It can be seen that there is no force closed-loop in inter-

active control. The compliance in interaction is embodied

in the dynamic relationship of the force and the position,

that is, the characteristics of the admittance model.

The output of admittance model is the adjustment of

position denoted as 4q(t), and the desired joint trajectory

qd(t) for the robot is calculated in equation (1), where qr(t)

represents the reference trajectory

DqðtÞþqrðtÞ ¼ qdðtÞ ð1Þ

The admittance model is the dynamic relationship

between the human–robot interaction force Fint and the

adjustment of position 4q(t). It is given as follows

F int ¼ MD€qðtÞþBD _qðtÞþKDqðtÞ ð2Þ

where M, B, and K are mass, damping, and stiffness coeffi-

cient, respectively.

The admittance model transfer function (3) is obtained

through the Laplace transformation from equation (2)

DqðsÞ
F intðsÞ

¼ 1

MðsÞs2 þ BðsÞsþ K
ð3Þ

Robot

Robot system

Force Motion 
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Figure 2. Human–robot interaction in gait rehabilitation training.
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Figure 3. Effects of admittance parameters. (a) Effect of stiffness coefficient K, (b) effect of damping coefficient B, and (c) effect of inertia
coefficient M.
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It can be seen from formula (3) that M, K, and B in the

admittance model can be used as adjustable parameters. To

determine the appropriate adjustable admittance parameters,

the influence of each admittance parameter on the control

characteristics is studied by simulation, as shown in Figure 3.

From the simulation results, we can see that stiffness

coefficient K reflects the adaptability of the adjustment of

position. The greater the stiffness, the smaller the adjust-

ment of position is. Damping coefficient B reflects the

adaptive speed of the adjustment of position. The greater

the damping, the longer the rising time is. And with high B

value, the same amount of position adjustment needs more

energy. The adjustable range of mass coefficient M is lim-

ited, because it causes the rapid change of the damping

ratio and natural frequency of the system at the same time,

which influences the stability of the system. It has little

influence on the changeable amount of the position in the

limited adjustable range. Therefore, it is not selected as an

adjustable parameter of the admittance model. Stiffness

coefficient K and damping coefficient B are the adjustable

parameters of the admittance model to meet the require-

ment of the patients during different rehabilitation period.

Admittance parameter adjustment algorithm based
on reinforcement learning

In active rehabilitation training, the adaptive parameters (K

and B) algorithm is adopted according to the degree of

participation of patients. It allows the robot to adapt itself

to the patient in the range of stiffness (Kup, Kdn) and the

range of damping (Bup, Bdn) that are set to ensure the sta-

bility of the system. In addition, human walking is a coor-

dinated high-level planning process, and patients have

individual walking habits before the impairment of lower

limb function. Therefore, reinforcement learning algorithm

is applied to the personalized learning of admittance para-

meters. The purpose of learning algorithm is to find optimal

strategies for parameter adjustment suitable for different

patients using the collected interactive data of themselves.

Using this method, the adjusting process is according to the

human control performance and walking habits and adapts

to the different disability levels of patients.

Sigmoid function is used in the design of adaptive law. It

is continuous, mono-incremental, and bounded in the def-

inition domain (�1, þ1), and the range is from 0 to 1, as

shown in Figure 4(a). It is defined as

SðxÞ ¼ 1

1þ e�x
ð4Þ

Based on Sigmoid function, the used function is

S0ðxÞ ¼ h

1þ ecjxj ð5Þ

where the parameter h is used to adjust the peak value, and

the parameter c is used to adjust the concentration of the

function, as presented in Figure 4(b).

An adaptive law is proposed to tune the admittance para-

meters based on equation (5), and the adjusting values ofDB

and DK are defined in equation (6), where Bup and Bdn are

the upper and lower limits of damping, respectively; Klup and

Kldn are the upper and lower limits of stiffness, respectively;

Fd is the desired force set according to the evaluation on

patient’s condition; h1, c1, h2, and c2 are the parameters of

Sigmoid deformation function defined in equation (5).

DB ¼

(
Bup; B < Bup

h1

1

1þ ec1jF int�Fdj
; Bup � B � Bdn

Bldn; B > Bdn

DK ¼

K up; K < K up

h2

1

1þ ec2jF int�F dj
; K up � K � K dn

K dn; K > K dn

8>>>>><
>>>>>:

ð6Þ
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In equation (6), h1, c1, h2, and c2 are the key para-

meters for the adaptive law. Four adjustment parameters

are determined by the designed reinforcement learning

algorithm in our study, and the block diagram is shown

in Figure 5.

Because the admittance model describes the dynamic

relationship between position and force, the choice of

learning parameters is related to them. Joint angle error qerr

and human–robot contact force Fint are discretized to form

a state set. However, target state is set according to the

rehabilitation needs of patients. Comparing the current

state with the target state, discrete action is selected by

Sarsa(0) algorithm according to the reward and the policy,

and finally, the incremental parameters are calculated by

the selected actions. Sarsa(0) is an on-policy one-step

temporal-difference (TD) reinforcement learning method.

Reinforcement learning tasks are described by Markov

decision process (MDP). MDP is a mathematically idea-

lized form of the reinforcement learning problem for which

precise theoretical statements can be made.27 This form is

characterized by a four-tuple <X, A, P, R>, where X is state,

A is action, P is the probability of state transition, and R is

reward. For rehabilitation training task, their definitions

and the algorithm are designed as follows:

(1) State space X and discretization:

Joint angle error qerr and human–robot contact force Fint

are selected as the system states to form a state space X ¼
fDq, Fg. These state-values are continuous in actual reha-

bilitation training, and the continuous states will lead to

“dimension disaster,” which may cause the problems of

calculation and storage in learning process. At present, to

solve these problems, fuzzy logic and neural network meth-

ods are often used to discretize or generalize the state;

however, these method will lead to the complexity of the

algorithm. In our study, an empirical segmentation method

is used to divide the continuous values of the angle error

and the human–robot contact force into M and N intervals,

respectively, to form a 2-D mesh, that is, it is used to

represent the whole state space and a 2-D array is used to

numbering the grids. There are M � N grids in the state

space. Each grid is defined as fs1, s2g, where s1 is indicated

angle error interval number in the range of [0, M] and s2 is

indicated human–robot contact force interval number in the

range of [0, N].

(2) Action set A:

Action set A is defined as four groups of actions which

are expressed as [1, 0], [�1, 0], [0, 1], [0, �1] according to

the corresponding up, down, left, and right movements. The

selection of the action becomes the search for the optimal

route along with the state transition when the target state is

given according to the patient’s need. The shortest route is

chosen as the optimal policy.

(3) Policy p and probability of state transition P:

Sarsa(0) is an on-policy control method that attempts to

evaluate or improve the same policy that is used to make

decisions. The e-greedy policies are applied to the on-

policy method, meaning that with probability 1 � e they

choose an action that has maximal estimated action value,

but with probability e, they instead select an action at ran-

dom, described in equation (7)

pe¼
argmaxa Qðx; aÞ with probability 1� �

1

AðxÞ with probability �

8><
>: ð7Þ

where Q(x, a) is the state action-value function, A(x) is the

total number of actions contained in a discrete action set,

therefore, 1/A(x) is the average probability.
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Figure 5. Adaptive admittance parameters adjustment method based on reinforcement learning.
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(4) State action-value function Q(x, a) and reward R:

It is easy to devise incremental formula for updating

state action-value function as follows

Qtþ1ðxt; atÞ ¼ Qtðxt; atÞ þ a
�

Rtþ1 þ gQtðxtþ1; atþ1Þ

� Qtðxt; atÞ
�

ð8Þ

where t is the discrete time step, a is the step-size para-

meter, g is the discount-rate parameter, Rtþ1 is the reward

of time tþ 1 with transition from state xt to state xt þ 1 after

taking action at, represented as follows

Rtþ1 ¼ rtþ1jat; xt ! xtþ1 ð9Þ

where rtþ 1 is the immediate reward which is the evaluation

of the state-action pair (xt, at). Its definition directly affects

the effect of task execution. The immediate reward rtþ 1 is

set to constant �1, because we choose the shortest route

from the initial grid to the target grid as the optimal policy

as mentioned above and it is a failed exploration before the

target grid is reached. The immediate reward value set to a

constant also simplifies the solving process of the algo-

rithm. However, due to the existence of discount-rate para-

meter g, the value of state action-value function increases

gradually as the state gets closer to the target.

(5) Adjustment of the parameters:

An incremental formula of the adjustment coefficients h,

c is derived from the actions as follows

htþ1 ¼ ht þ
al

M
; ctþ1 ¼ ct þ

ar

N
ð10Þ

where M and N are the total number of rows and columns in

the state space, respectively; al and ar are the actions times

moving along grid columns and rows, respectively.

Interactive control strategy of independent joint

In the early stage of rehabilitation, the psychological bottle-

neck of patients that they dare not walk should be overcome

by passive rehabilitation training. After this stage, patients

enter the recovery stage. Then, they will be intended to

participate actively. During this period, the patient’s par-

ticipation movement generates the contact force as an input

for the robot from the external environment. The robot with

the varying-parameter admittance controller can adjust its

behavior by the interactive force feedback and move near

the reference gait trajectory to achieve active compliance

rehabilitation training. In addition, the admittance para-

meters are appropriate to the patient based on the reinfor-

cement learning adjustment algorithm. The interactive

control strategy of independent joint based on an adaptive

admittance model is shown in Figure 6.

The control scheme consists of a position controller

implemented in joint space and an admittance controller

in interaction space. Trajectory tracking of the robot could

be achieved by controlling individual cylinder displace-

ment in joint space. The cylinder is controlled by a pneu-

matic proportional valve. In consideration of the time delay

and nonlinear characteristics of the pneumatic system, an

improved Proportion-Integral-Derivative (PID) controller

with the dynamic feedforward algorithm is designed. The

dynamic feedforward algorithm consists of a velocity feed-

forward (VFF) algorithm and a gravity compensator (GC),

as shown in the following formula (11)
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sensor
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sever system

Human-robot force 

sensor

Adaptive admittance 
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Passive rehabilitation training

Active rehabilitation training

Robot
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Position controller in joint space
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Figure 6. Interactive control strategy of independent joint based on an adaptive admittance model.
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u ¼ upid þ uvff þ uGC

upid ¼ Kpeþ K i

Xk

j¼0

eþ K d _e

uvff ¼ Kvff _xd

uGC ¼ KGCM GðqdÞ

ð11Þ

where u is the output of controller; e is the position error;

Kp, Ki, and Kd are the proportion, integral, and differential

coefficients in PID controller, respectively; Kvff is the coef-

ficient of VFF; and KGC is the coefficient of GC, and

MG(qd) is the time-varying gravitational moment calcu-

lated from desired trajectories.

Simulation and analysis

Simulations are conducted to verify the feasibility of the

interactive control system with the hip and knee joint angle

data in Clinical Gait Analysis (CGA)28 database as the

reference trajectories. The database is established by cap-

turing a large number of motion information of normal

people during walking by 3-D Motion Capture System of

Northern Digital Technologies Inc (Ontario, Canada).

(NDI). Each group of motion information includes 50 equal

interval joint angle sampling points in a complete gait cycle

of hip, knee, and ankle joints. The interactive control sys-

tem is presented in Figure 7.

Simulation models and parameters

Each leg of the exoskeleton robot is a two-link serial

manipulator, which consists of two independent rotating

joints, hip and knee, actuated by a pneumatic proportional

valve-controlled cylinder system separately. Two pneu-

matic proportional valves (Festo (Germany), MPYE-5-

M5-010-B) are utilized to control the hip cylinder (SMC,

CM2C32-125Z) and knee cylinder (SMC, CM2B32-80)

with the pressure of 0.4 MPa. Based on the mathematical

model of valve-controlled cylinder system,29 the transfer

function between the control voltage u for the proportional

valve and the output displacement x of hip cylinder can be

obtained with the above pneumatic components para-

meters, calculated as follows

GhipðsÞ ¼
X hipðsÞ
U hipðsÞ

¼ 19870

sðs2 þ 20sþ 5317Þ ð12Þ

Also the mathematical model of knee valve-controlled

cylinder system is calculated as follows

GkneeðsÞ ¼
X kneeðsÞ
U kneeðsÞ

¼ 45760

sðs2 þ 33:33sþ 12240Þ ð13Þ

The geometric relations between joint angle q and cylin-

der displacement x are as follows

xhip¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
167620�109056� cosð77:6� � jqhipjÞ

p
�292 qhip� 0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

167620�109056� cosð77:6� þ jqhipjÞ
p

�292 qhip > 0

( )

ð14Þ

xknee ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
79250� 50350� cosqknee

p
� 247 ð15Þ

Each leg of the gait rehabilitation training robot is a 2-

DOF mechanism. Its dynamic model is as follows

t1

t2

 !
¼

I 1 þ I 2 þ m1r2
c1 þ m2l2

1 þ m2r2
c2 þ 2m2l1rc2cq2 �I 2 � m2r2

c2 � m2l1rc2cq2

�I 2 � m2r2
c2 � m2l1rc2cq2 I 2 þ m2r2

c2

 !
€q1

€q2

 !

þ
�2m2l1rc2sq2

_q2 m2l1rc2sq2
_q2

m2l1rc2sq2
_q1 0

 !
_q1

_q2

 !
þ
ðm1grc1 þ m2gl1Þsq1 þ m2grc2sq12

m2grc2sq12

 ! ð16Þ
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Figure 7. Interactive control system for pneumatic-driven gait rehabilitation training robot. GC: gravity compensator; VFF: velocity
feedforward.
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where subscript “1” represents hip joint parameters while

subscript “2” represents knee joint parameters, t is the joint

torque, I is the moment of inertia, m is the linkage mass, rc

is the centroid distance, l is the linkage length, q, _q, and €q
are the joint angle, angular velocity, and angular accelera-

tion, respectively; sq, cq are the abbreviation of sinq and

cosq, respectively; sq12 is denoted as sinðq1 � q2Þ.
The parameters of the robot in equation (16) are

obtained by ProE software (Pro/Engineer WildFire5.0), and

the parameters of the lower limbs of the human body are

gotten from the national standards of the People’s Republic

of China: Inertial parameters of adult human body (GB/T

17245-2004) and Human dimensions of China Adults (GB

10000-88). Taking the exoskeleton robot worn by patients

with 1.75 m height and 70 kg weight as an example, the

dynamic model parameters are listed in Table 1.

Simulation and analysis

(1) Validity of admittance parameters learning algo-

rithm based on Sarsa(0)

The parameters of the reinforcement learning algorithm are

set by trial and error, where a ¼ 0.15, g ¼ 1, e ¼ 0.1.

Taking CGA standard gait data as input, the learning pro-

cess of admittance parameters based on Sarsa(0) under

time-varying human–robot contact force in a gait cycle is

shown in Figure 8. Taking the hip joint as an example, the

error of hip joint angle takes 0.2 rad as an interval, and

the human–robot contact force takes 2 N as an interval.

The angle error and the human–robot contact force are

divided into five and nine intervals, respectively, to form

a 5 � 9 2-D mesh for the state space.

Comparing the results of 10-time (Figure 8(a)) and 50-

time parameters learning (Figure 8(b)), we can see that with

the increase times of learning, the damping parameters and

stiffness parameters gradually tend to be stable. It takes

about 0.032 s to complete 50-time learning sessions. Figure

8(b) and (c) indicates that the admittance parameters are

smaller when the human–robot contact force is large. The

value of B decreases to speed up the angle adjustment, and

the value of K decreases to enlarge the angle adjustment

range, so that the robot has greater flexibility and faster

tracking with the movement of patients. When the

human–robot contact force is lowered to zero, the admit-

tance parameters tend to a larger value. Higher stiffness can

ensure the tracking accuracy of trajectory, and larger damp-

ing can reduce overshoot and enhance the safety of reha-

bilitation training. Therefore, the learning processes of

admittance parameters meet the requirements of both flex-

ibility and safety in active rehabilitation training.

(2) Comparison of Sarsa(0) learning algorithm and

non-learning admittance control algorithm

Under the same conditions of the time-varying human–

robot contact force, the effects of learning and non-learning

control algorithms on system performance are compared,

as shown in Figure 9.

With fixed settings of h1¼ 100, c1¼ 0.1, h2¼ 1400, and

c2 ¼ 0.1, the angle adjustment process of the non-learning

admittance model is long, multiple fluctuations occur, and

the angle adjustment range is large, plot in blue in Figure 8.

However, after the learning process comes to the stable

with the Sarsa(0) algorithm, along with the change of

human–robot contact force, the angle adjustment changes

relatively gently, without many oscillations, plot in red.

The hip joint angle tends to be stable at 0.5 s and the knee

joint angle reaches to be stable at about 0.2 s, which is

consistent with the change of human–robot contact force,

and the overshoot is small. Because the time-optimal eva-

luation index is used in the designed algorithm, it can be

observed in the simulation that the adjustment time of

learning strategy is shorter than that of no-learning strategy.

The adjustment values of admittance parameters are com-

pared, as listed in Table 2.

It can be seen that the adjustment range of B of Sarsa(0)

learning algorithm is larger than that of Sigmoid algorithm

without learning, and the peak-to-peak value (Bpp) is larger,

while the adjustment range of K value is smaller than that

of Sigmoid algorithm, and the peak-to-peak value (Kpp) is

slightly smaller, listed in Table 2. In brief, the admittance

model with Sarsa(0) learning algorithm has larger damping

adjustment range and smaller stiffness adjustment range, so

the angle adjustment speed is slower and the system is

relatively stable. If the spring–damp–mass system is used

as an analogy, the model is equivalent to a soft spring. In

terms of system dynamic characteristic parameters, the K

value affects the natural frequency on of the model. If the K

value is small, the natural frequency is low, so the rising

time is long. The B and K values affect the damping ratio x
of the model together. Because B is on the molecule and K

is on the denominator of the damping ratio x, the Sarsa(0)

algorithm leads to the increase of the model damping ratio,

that is, the reduction of overshoot. Thus, the adjustment of

admittance parameters of Sarsa(0) makes the patient feel

more comfortable.

(3) Personalized features in reinforcement learning

algorithm

Another contribution of reinforcement learning is that

the model reflects the patient’s own personalized

Table1. Human–robot system dynamic parameters.

Mass
(kg)

Length
(m)

Centroid
distance (m)

Moment of
inertia (kg�m2)

Thigh of robot 2.428 0.48 0.24 0.0466
Shank of robot 1.183 0.34 0.17 0.0114
Thigh of human 9.847 0.48 0.24 0.1637
Shank of human 4.016 0.34 0.17 0.0258
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characteristics by learning with the patient’s sample data.

Each patient needs different treatment schemes because of

their altered condition. The joint angle and human–robot

contact force are selected as two state variables of this

algorithm, both of which have personalized characteristics

of patients who are training.

As shown in Figure 10, under the same time-varying

human–machine contact force (curve in lower left corner),

different admittance parameters are obtained by Sarsa(0)

algorithm learning with two groups of different CGA data

(curves in lower right corner). The admittance parameters

obtained by CGA2 group with large joint angle are rela-

tively smaller. From the aforementioned analysis, these

lead to the larger value of angle adjustment and the faster

adjustment speed. Therefore, for different patients, the

influence of joint angle during walking can be reflected

in learning algorithm for the parameters of the controller,

which has personalized characteristics of themselves.

Experimental results

The interactive control experiments are conducted on the

prototype of gait rehabilitation training robot (Figure 11)

under two modes of passive rehabilitation training and

active rehabilitation training.

Experimental system and protocol

At present, it is in the prototype stage. A healthy person

(male, 26 years, 1.75 m height) participated in this study.

Before the training, he wore the exoskeleton robot prototype,

which was adjusted in accordance with the length of his

lower limbs and tied the hip and knee joints together with

a strap. The inner ring of the human–robot contact force

detection device we developed closely surrounded the tes-

ter’s thigh. Along with the walking, the human–robot contact

force was measured in real time. And two linear potenti-

ometers (KTM-125 L (Taizhou Jiaojiang Xiyu Electronics
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Factory, Taizhou, China), KS15-150-05 (Jinan Kaisi Tech-

nology Co., Ltd., Jinan, China)) installed on the hip cylinder

(SMC (Japan), CM2C32-125Z) and the knee cylinder (SMC,

CM2B32-80) measured the displacements to calculate the

corresponding joint angles of the robot. The measurement

and control system was constructed by the semi-physical

real-time system provided by the LinksRT company (Beijing

LINKS Technology Co., Ltd., Beijing, China), including an

A/D board (Ni6259) for analog input and a D/A board

(Ni6216) for digital output for the pneumatic proportional

valves (Festo, MPYE-5-M5-010-B). The pneumatic system

was supplied with the pressure of 0.4 MPa.

The treadmill speed was set to 0.8 km/h in active reha-

bilitation training experiment. Sensors data for all experi-

ments were collected at 100 Hz. The hip and knee sagittal

plane physiological gait data in CGA database were used to

define the reference joint angle trajectories.

Passive rehabilitation training experiment

The treadmill was stationary in passive rehabilitation train-

ing experiment. The right leg of the tester stood on the

treadmill as a support. The left leg is worn in the exoskele-

ton, and it is lifted up, driven entirely by the robot, which

simulated the patient’s passive rehabilitation training, that is,

the left lower limb of the human body had no initiative. The

gait cycle is 5.6 s. This experiment completed 10 gait cycles

of passive training. The parameters for position controller

(formulas (11)) in the experiment are given in Table 3.

The synchronous detection of the cylinder displacements x

and the human–robot contact force from the beginning to

three gait cycles are selected for analysis purpose, presented

in Figure 12. The desired trajectories xd of the hip and knee

cylinders are calculated from the CGA data by equations (14)

and (15), plot in blue and cyan dotted lines, respectively.

The measured human–robot contact force is very small in

passive rehabilitation training. In preparation stage during 0–

10 s, the exoskeleton robot drives the lower limbs of the tester

from the upright state to the leg-lifting state. The joint motion

angle varies slowly and the human–robot contact force is only

about 1 N during this period. Then in the normal gait cycle, the

human–robot contact force slightly increases due to the large

motion range of joint. The range of human–robot contact

force in the experiment is (0.81, 2.98) N. Because the purpose

of passive rehabilitation training is to let the affected limb

walk in accordance with the predetermined trajectory without

active consciousness, there is no force outer-loop in the con-

trol strategy and only the inner-loop position controller acts.

From the measured curves of displacement, it can be seen that

the time lag characteristics of the pneumatic system are sup-

pressed by velocity feedforward of the position controller.

Thus, the cylinders’ displacements are synchronized with the

desired trajectories in each gait cycle. However, there are

always some errors and oscillations in the peak value of the

hip joint. The time for arrival of the peak value is just the

transition stage from the joint extension to flexion, and the

cylinder is required to change direction. Therefore, there are a

lot of uncertain factors such as friction and impact when
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Table 2. Comparison of two algorithm in admittance parameters
adjustment.

Range of B Bpp Range of K Kpp

Hip joint Sigmoid (35.41, 60) 24.59 (555.75, 900) 344.25
Sarsa(0) þ

Sigmoid
(29.31, 60) 30.69 (582.8, 900) 317.2

Knee joint Sigmoid (10.44, 60) 49.56 (206.2, 900) 693.8
Sarsa(0) þ

Sigmoid
(10.75, 60) 49.25 (210.78, 891.4) 680.62

K: stiffness coefficient; B: damping coefficient; Bpp: peak-to-peak B value;
Kpp: peak-to-peak K value.
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cylinder is reversing. The friction moment is not compensated

in the control strategy. Another reason is that the robot hip

joint bears the weight of the human lower limbs and exoske-

leton mechanism, while the gravity compensation coefficient

is a fixed value. The above factors lead to the errors of the

peak value. Although the knee joint has the above problems,

the error is less than that of the hip joint because of its smaller

load. Therefore, the passive rehabilitation training experi-

ment verifies the effectiveness of the inner-loop position con-

trol strategy, which can meet the demands of gait tracking

accuracy in rehabilitation training.

Active rehabilitation training experiment

In the active rehabilitation training experiment, the left leg of

the patient was no longer suspended, but the lower limbs

walked on the treadmill. When the treadmill speed is set to

0.8 km/h, the gait cycle of human walking is 4 s. The refer-

ence trajectories of the hip and knee cylinders and the con-

trol parameters of the position controller are consistent with

those set in the passive rehabilitation training experiment.

The measured data from the beginning to the four gait cycles

are selected for analysis purpose, presented in Figure 13.

The tester’s initiative leads to the increase of human–

robot contact force in active gait rehabilitation training. In

the preparation stage when the exoskeleton robot drives

the lower limbs from the upright state to the leg-lifting

state, the human–robot contact force is only (0.61, 2.15)

N, because the joint motion angle varies slowly as the

passive training. With the beginning of the normal gait

training, the human–robot contact force increases, and the

range of human–machine contact force is (�26.21, 11.06)

N. The human–robot contact force increases significantly

compared with the passive rehabilitation training process

because of the active participation of the tester. The pur-

pose of active rehabilitation training is to encourage

patients to participate actively with the robot providing

part of the help and adapting to human movements to

make the human body feel comfortable. Next, the com-

pliance of the robot is verified with the interactive control

strategy, with B and K being adjusted based on equations

(6) and (10). At present, the human–robot contact force

detection device is only installed on the left thigh; so, just

the hip motion control is verified.

Dynamic admittance parameters are the key factors for

trajectory adjustment to realize the compliance of the robot.

From the recorded experimental curves of active rehabili-

tation training (Figure 12), it can be seen that the human–

robot contact force in the initial stage (0–7.3) s is small, so

the adjustment parameters are no longer presented. In the

normal four gait cycles from 7.3 to 23.3 s, the admittance

parameters changing processes based on reinforcement

learning algorithm and the hip joint angle adjustment are

recorded as well as the measured interaction force, as

shown in Figure 14.

Seen from the angle curve of hip joint, the desired angle

qd for the robot deviated from the reference angle qr. It is

caused by the force feedback to the controller. Detailed

analysis and discussion are as follows:

Figure 11. Experimental system of the rehabilitation training: (a) human–robot contact force detection device and (b) gait rehabili-
tation training robot prototype and tester.

Table 3. Position controller parameters.

Joint Kp Ki Kd Kvff KGC

Hip 0.05 0.02 0.002 0.018 0.025
Knee 0.04 0.015 0.001 0.016 0.05

Kp: proportion coefficient; Ki: integral coefficient; Kd: differential coeffi-
cient; Kvff: coefficient of VFF; VFF: velocity feedforward; KGC: coefficient
of gravity compensator.
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1. Parameters B and K decrease as the contact force

increases while increase as the contact force

decreases. The adjustment range of parameter B is

(15.63, 58.8) and that of parameter K is (206.04,

886.17) based on the Sarsa(0) algorithm. The

adjustment of parameters is synchronized with the

change of human–robot contact force. When there

exists a large contact force between the robot and

the patient, the angle adjustment value Dq is also

large, which is the output of the admittance model.

It leads to the desired angle qd for the robot being

deviated from the reference angle qr to make the

robot following patients.

2. In the second gait cycle, the contact force is the

largest and the adjustment of the angle is also the

largest. With the better cooperation of the human
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and the robot in the third gait cycle, the adjustment

of the angle is also reduced, which shows that the

robot dynamically adapts to the lower limbs of the

tester who has the active participation.

3. There are two peaks of contact force in each gait

cycle. When the contact force is negative, it indi-

cates that the lower limbs of the tester lag behind the

robot, then the angle adjustment curve qd is slightly

ahead of the reference curve qr and vice versa.

4. Comparing the measured displacement x curve of the

hip joint cylinder in Figure 13 with the angle trajec-

tory qd of the robot adjusted by the human–robot

contact force in Figure 14, the trends of them are

in line. The robot legs walk according to the adjusted

qd actuated by the cylinder, instead of the initial

reference joint trajectory qr. It shows that the gait

accuracy is sacrificed in active rehabilitation train-

ing, but it provides flexibility for patients to partici-

pate actively. Nevertheless, there are upper and

lower limits in the adjusting range of parameters B

and K. In this experiment, the adjusting range of B is

(20, 60) and that of K is (200, 900). Both are deter-

mined through trial and error, thus it ensures that the

adjusted angles do not exceed the range of joint

motion of human physiological characteristics.

Discussion and conclusion

Whether impedance control or admittance control is

employed in the process of human–robot interaction, the

self-adaptation of model parameters is the focus of current

research. The self-adaptation is mainly realized by discrete

selection and continuous adjustment. For example, a

velocity-based impedance parameter selection method was

proposed by Erden and Mari.30 The velocity threshold and

the corresponding damping parameter empirical values

were chosen according to the experience. The principle

of the variable impedance control strategy was simple,

which reflected the adaptability adjustment of the model

parameters to a certain extent. However, the discrete impe-

dance parameter reduced the controllability and fluency of

operation. To achieve continuous model parameter adjust-

ment, researchers began to infer human operation intention

by monitoring the motion of the manipulator in the process

of human–machine interaction. For example, in the control

of Lokomat,20,21 real-time monitoring of joint angles was

adopted, and the stiffness and damping values of the impe-

dance controller were continuously adjusted using the func-

tion between the joint angle and the stiffness parameter, as

well as the relationship between stiffness and damping. In

control of CARR robot,23 the K and B values of the admit-

tance controller were adjusted online using the designed

adaptive law among the measured joint angle, the joint

moment, and the computational moment.

Most of the adaptive impedance or admittance interac-

tive control strategies mentioned above adopt the method

of constructing functions to adjust the parameters without

considering the individualized characteristics of patients or

manipulators in the interactive process. The parameters in

the function depend largely on the designer’s subjective

intention or the practical experience of a specific task.

Although the robot can dynamically adjust with the inter-

action information, it is more flexible than the interactive

control under fixed parameters; it needs to reset the para-

meters to the function when facing different patients to

provide more natural rehabilitation training experience for

them. Manual modification of parameters in functions

requires experience and a certain amount of time to

explore. It is also inconvenient for computer control.

To overcome the abovementioned limitations, the inter-

active control based on reinforcement learning is proposed

in this study. The interactive control strategy of rehabilita-

tion training robot is conducted by the two-loop nested

control structure of interaction space and joint space to

realize two training modes: passive rehabilitation training

and active rehabilitation training. The joint space control

strategy adopts the independent joint decentralized control

algorithm. The feedforward compensation of dynamic

characteristics is added, which improves the performance

of the PID controller in consideration of the nonlinearity

and modeling error of the pneumatic system. An adaptive

admittance model is used in the interactive control strategy

to stimulate the training initiative of patients. The para-

meter adaptive law is designed using the deformation for-

mula of sigmoid function to meet the needs of a dynamic

and time-varying interaction process. In addition, a
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personalized parameter learning method based on reinfor-

cement learning is proposed. A 2-D mesh of state variables

is constructed by discretizing human–robot contact force

and joint angle errors, so the personalized characteristics of

patients are quantified in the learning algorithm. Individua-

lized admittance parameters suitable for the patient are

obtained by reinforcement learning. The proposed tech-

niques in this study contribute to personal adaption and

active compliance in robot-assist rehabilitation training.

To the best of the authors’ knowledge, the interactive con-

trol based on reinforcement learning with the pneumatic

driven lower limb rehabilitation training robot has not been

reported in literature.

The next step is to realize the active resistance rehabilita-

tion training. Instead of setting the expected human–robot

contact force to be zero, the desired force is given according

to the patient’s need. Through the admittance model, the

stable contact force is always needed to be overcome to

provide resistance for the patient’s rehabilitation training.

At the same time, clinical experiments will be carried out

as soon as possible to further optimize the design of the

system.
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